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ABSTRACT

Chemical and physical properties of almonds were studied before drying, after drying and

after cooking.  During moisture exposure, such as a simulated  rainfall, an increase of

glucose, decrease of sucrose, and increased oil oxidation was observed.  Indicators of

concealed damage after drying but before cooking are increased oil oxidation from

moisture exposure, slight color changes, and decreased water soluble solids.  After

cooking, a drop in reactive arginine, histidine, lysine was observed.  These characteristics

indicate that browning in almonds with concealed damage follows the Maillard reaction

pathway.

Use of a lower temperature drying treatment can reduce the incidence of concealed

damage.  The incidence of concealed damage for nuts receiving the same moisture

treatment was 44.4% and 1.2% when dried at 110°C and 55°C, respectively. 

A combination of features in the transmission spectra obtained before cooking were used

to predict if concealed damage would develop in nuts after cooking.  It was observed that

nuts with concealed damage have less absorbance in the oil absorption band at 930 nm

and increased absorbance in the region between 700 and 750 nm.  Physical properties

such as mass, moisture changes during cooking, density and thickness, had very low

correlations with severity of concealed damage.  From near infrared transmission spectra

obtained before cooking, discriminant analysis and principle component analysis was

used to classify nuts as concealed damaged or normal; validation classification error rates

as low as 12.4% were obtained.

A visible and near infrared LED based prototype was built to automatically detect

almonds with concealed damage at commercial speeds, about 40 nuts per second.  The

prototype detects transmitted light through whole almonds from six different LEDs.  A

validation classification error rate of 20.0% was obtained with regression analysis.  Most

of the incorrectly classified nuts were on the border between having concealed damage or
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being normal.  Only 2.0% of the almond samples showing little or no browning were

classified as concealed damaged and 11.8% of the samples with severe concealed damage

were classified as normal.  Comparable results were obtained with discriminant analysis.
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1. INTRODUCTION

The almond, Prunus dulcis, is a member of the rose family and is closely related to the

peaches, plums, and apricots.  In fact, the seed enclosed within the hard shell of a peach

pit closely resembles an almond kernel.  The almond is believed to be native to temperate

desert zones of western Asia (Rosengarten, 1984).  Evidence, dating back to the bronze

age, of almond cultivation has been found in Greece and Turkey.  Almonds were first

planted in North America at Spanish missions along the southern California coast.  In the

mid 1800s, almonds started to be cultivated in California’s San Joaquin and Sacramento

Valleys.  Today, 99% of the almonds grown in the United States are found in California’s

San Joaquin and Sacramento Valleys between Bakersfield and Red Bluff (Rosengarten,

1984).  As of 1997, approximately 420,000 acres of almonds are cultivated in California

and will produce an estimated 680 million pounds of nuts (Anonymous, 1997). 

Approximately 60% of the world almond production is grown in California (Anonymous,

1994a).  There are several varieties or cultivars of almonds grown in California.  The top

three varieties grown in California are Nonpareil, comprising 49% of California's

production, followed by Carmel, comprising 17%, and Mission, comprising 8%.  All

three of these varieties are preferred as cooking ingredients.  

Concealed damage in almonds is defined by the industry as a browning of the kernel

interior after moderate to high heat processing, such as cooking or roasting.  Figure 1.1

shows an example of a normal almond and concealed damaged nut after cooking.  There

are no visible defects or indications of concealed damage on the exterior of the kernel

before or after cooking or roasting.  Bitter flavors are developed in extreme cases of

concealed damage after roasting or cooking.  Almonds with concealed damage are a

problem for the almond industry for a variety of reasons: lower consumer acceptance of

their reddish-brown internal appearance, bitter flavor, and possibly lower nutritional

value due to degraded amino acids.  Concealed damage does not fall into any of the

traditional USDA almond defect categories such as discoloration, insect damage, etc.

since the disorder cannot be identified from the exterior of the kernel.  Normally, a food

processor that purchases almonds will set their own specific limits on the allowable
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quantity of concealed damaged nuts.  An almond processor sometimes has a difficult time

meeting their customers’ defined specifications in seasons when the incidence of

concealed damage is high.

Figure 1.1.  Normal almond and almond with concealed damage.  Both nuts were cooked
at 140°C for 60 minutes in a gravity convection oven.

The concealed damage disorder is apparently initiated when nut kernels are exposed to a

warm and moist environment (Kader and Thompson, 1992 and Reil et al., 1996).  Nuts

are most likely to encounter conditions favorable for development of concealed damage

when rain occurs during harvest.  However, concealed damage may occur anytime after

harvest if the kernels are exposed to a warm and moist environment.  Almonds are

harvested using a three step process: first, the trees are shaken to knock the nuts to the

ground; second, the nuts are swept into windrows; and third, the nuts are picked up by

harvesters.  Usually a few days, but sometimes a few weeks, will lapse between tree

shaking and nut removal from the orchard.  It is usually desirable to allow the nuts to dry

on the ground before sweeping into windrows (Reil et al., 1996).  The disadvantage of

this procedure is that the time period when the nuts are lying on the orchard floor creates

an opportunity for the nuts to be exposed to rain and for concealed damage to occur. 

Concealed damage may become more severe if moist nuts are swept into windrows or are

collected and stockpiled while wet.  On the other hand, concealed damage can be

minimized if nuts are removed from the orchard shortly after a rain and promptly dried.

Unfortunately, it is often not feasible to get harvesting equipment into the orchard under

wet conditions.
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The incidence of concealed damage is very sporadic from year to year.  It becomes a

significant problem every three to five years, when a heavy rain occurs during harvest. 

Almonds containing more than 6% kernel moisture (w.b.) are dried upon delivery to the

processor.  During a wet harvest season, the quantity of almonds requiring drying upon

delivery to the processor may exceed 20% of the total harvest and exceed the drying

capacity of most almond producers.  This creates an increased time when almonds are

held at a high moisture content which further increases the incidence of concealed

damage.  Properly dried nut shipments are essentially free of concealed damage while the

wet shipments that are dried immediately upon delivery to the processor typically contain

1% to 10% or more concealed damaged nuts (Stoddard, 1995).

A device to sort nuts with concealed damage would ideally be placed after the drying

process, when nuts are removed from storage for final processing.  Most almonds are

used as ingredients in foods and are impossible to inspect after cooking.  Approximately

98% of all domestically consumed almonds are shelled.  Of the shelled almonds, 60% are

sold un-roasted for use as ingredients in candy and other foods, 15% are roasted and

salted and packaged for sale as snack food (Woodroof, 1979; Bushnell and King, 1986).  

Mission almonds are more prone to concealed damage than other almond varieties.  The

Mission cultivar is harvested in late September or early October, after all other almond

varieties are harvested.  It is not known if the harvest time and increased chance of rain at

harvest causes the higher incidence of concealed damage or if the reason is physiological. 

Nonpareil almonds are typically harvested in late August or early September, before all

other almond varieties.  The Carmel cultivar is harvested in the middle of the almond

harvest season and may have significant concealed damage if they are exposed to rain

during their harvest.
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2. OBJECTIVE

The objective of this research was three-fold.  First, the chemical and physical properties

of almonds with concealed damage were studied as well as the environmental conditions

required to induce concealed damage.  Sorting for almonds with concealed damage is

preferably done as the nuts come out of storage but before cooking or roasting.  Nuts are

commonly mixed with other foods before cooking or roasting so there is no opportunity

to inspect them.  For this reason, emphasis was on properties after drying as this stage

provides the best opportunity for sorting, but properties before drying and after cooking

were explored as well.  The second objective of this study was to explore the treatment

and detection of almonds with concealed damage.  The effectiveness of a near infrared

device to detect early signs of a browning reaction was explored as a possible method to

rapidly detect almonds with concealed damage.  Thirdly, different drying regimes were

evaluated to determine if the concealed damage browning reaction can be inhibited

though different drying operations.
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3. REVIEW OF LITERATURE

3.1 Browning Reaction Chemistry

To date, there has been no formal report on the physical and chemical properties of

concealed damage in almonds in the literature.  Much has been reported about causes of

browning reactions in other foods exposed to warm and humid conditions resulting with

similar characteristics to almonds with concealed damage.  There are three basic types of

browning reactions: enzymatic, non-enzymatic, and thermal decomposition.  Enzymatic,

or oxidative, browning is common in many fruits and vegetables such as apples and

bananas.  Enzymatic browning occurs if these fruits are cut open and exposed to air for a

short period of time (Richardson and Hyslop, 1985).  Enzymatic browning requires the

presence of oxygen, copper, and some sort of damage to fruit tissue to expose the

browning enzyme, phenolase, to the oxidizable tissue.  Sufficient tissue damage often

occurs with bruising or cutting.  Thermal decomposition occurs when sugars are heated

in near anhydrous conditions.  High temperatures, approximately 200°C, are required to

initiate the reaction with sucrose (Lee, 1983).  It is not likely that enzymatic browning or

thermal decomposition are responsible for concealed damage in almonds.  Concealed

damage is no more common in sliced almonds where the slicing would likely liberate

phenolase from cells than in whole kernel product.  Thermal decomposition is not likely

either since browning due to concealed damage can occur at  temperatures well below

those required for thermal decomposition.  It is hypothesized among almond industry

scientists that the chemical reaction which causes concealed damage is a non-enzymatic

browning reaction called the Maillard reaction (Stoddard, 1995).  Non-enzymatic

browning is common in many processed foods; for example, it is the reaction which

causes bread crust to turn brown.  

Non-enzymatic browning has been reviewed and summarized by several researchers. 

Hodge and Osman (1976) describe non-enzymatic browning having three stages.  The

initial stage is well understood but the later two stages are not.  The first stage produces

no recognizable physical characteristics but produces products called Amadori products. 

Amadori products arise from the product of an initial reaction between amine groups and
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carbonyl groups.  The intermediate stage involves various reactions of the Amadori

products which may liberate the bound amine group and form more reactive dicarbonyl

compounds.  The completion of the intermediate stage is indicated by a slight yellow

appearance and strong UV absorption from 277 nm to 285 nm.  The final stage involves

amino acid condensation with intermediate stage products and aldehyde-amine

polymerization to form brown pigments called melanoidins.  Before brown pigments are

formed, fluorescence may be observed at 425 nm when excited at 375 nm.  However,

fluorescence disappears upon formation of the brown pigments, making the appearance

of fluorescence fleeting and difficult to observe.

The first stage of the Maillard reaction, shown in figure 3.1.1, begins with the

condensation of an amine and carbonyl group of an aldehyde or ketone to form what is

called a carbonylamine.  Usually, the aldehyde or ketone is in the form of a reducing

sugar but it can also arise from the oxidation of lipids.  Normally this initial reaction is

the slowest because the aldehyde or ketone must be in their acyclic forms.  The

concentration of a reducing sugar in its acyclic form is usually less than 1% of the total

monosaccharide concentration.  Labuza and Baisier (1992) report that the rate of

condensation of the protein, hemoglobin, with glucose is 0.6x10-3 (mM@hr)-1.  The amine

group of all free (non-protein) amino acids are highly susceptible to react with an

aldehyde or ketone.  Protein bound amino acids need to have an amine group on their

side chain to be involved in a Maillard reaction.  For this reason, lysine is most likely to

be involved in the Maillard reaction (Rhee et al., 1981).  Arginine and histidine are also

susceptible to degradation from the Maillard reaction although at a lesser degree than

lysine (Whistler and Daniel, 1985).  In almonds, 99% of the amino acids are stored in

protein (Soler et al., 1989).  Arginine, histidine and lysine together comprise 16% of all

total amino acids in almonds (Soler et al., 1989).
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3.1.1.  The initial stage of the Maillard reaction.

The initial carbonylamine, formed by the condensation of an amine and carbonyl group,

undergoes what is called an Amadori rearrangement to finally form Amadori products. 

Amadori products are more stable than any of the earlier reaction products and their

formation is rapid compared to carbonylamine formation (Labuza and Baisier, 1992). 

Before Amadori product formation, the reaction might be partially reversed before

Amadori products are formed, but only under extremely acidic conditions (Cheftel et al.,

1985).  Amadori products are fairly stable in moist and acidic environments.  For the

most part, their formation is irreversible.  Amadori products are less stable at high

temperatures and browning will occur upon heating a food with significant accumulated

Amadori product.

The intermediate stage of the Maillard reaction has a variety of pathways.  When

Amadori products are heated, they can lose one or more water molecules, fragment, or

combine with another amino acid.  The progression through any of these pathways

depends on the pH of the system (Eskin, 1990).  Most of the color is produced in the final

stage of the Maillard reaction.  Here, intermediate stage products may bind with more
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amino acids and polymerize to form large hetrocyclic nitrogen compounds which have a

brown appearance.

The Maillard reaction is highly dependent on time, temperature, and moisture.  In low

moisture systems, added water increases the mobility of reactants and accelerates

browning.  However, the browning rate reaches a maximum, and eventually decreases,

with increasing moisture because the reactants become diluted.  Also, since water is a

product of the reaction, high water concentrations will tend to drive the reaction

backwards.  The browning rate is maximized when the water activity is between 0.4 and

0.8 (Leung, 1987).  Lea and Hannan (1949) monitored amino group loss in casein-

glucose model systems stored at various relative humilities.  They showed that the

maximum loss of free amino groups occurred between 0.65 and 0.7 water activity.

Generally, increases in temperature will increase the browning rate.  A 10°C increase in

temperature will increase the browning rate three to five times, depending on the food

involved (Shallenberger, 1974).  Eichner et al. (1985) investigated non-enzymatic

browning in carrots during drying at temperatures of 110°C, 90°C, and 60°C.  All carrots

were dried to 7% moisture content and most brown pigments formed after the moisture

content dropped below 20%.  Browning, as measured by light absorption at 420 nm, was

most severe when the drying temperature was 110°C, the highest temperature studied. 

Accumulation of Amadori product, measured by HPLC, was highest at 110°C also.  No

browning and little Amadori product accumulated when the carrots were dried at 60°C. 

They suggested that most browning could be avoided if the drying temperature was

simply reduced during the later stages of drying, after the moisture content dropped

below 20%.  

There have been many studies of a Maillard type reaction in soybeans during prolonged

storage.  Like almonds, mature soybeans do not contain reducing monosaccharides but do

contain small amounts of sucrose and oligosaccharides.  When mature soybeans are

soaked in water at room temperature for 15 hours, 8% of the bean's oligosaccharides and

sucrose disappeared (Rackis, 1978),  indicating the onset of germination.  Wettlaufer and
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Leopold (1991) monitored Amadori product and fluorescent Maillard products in

soybeans when stored in warm, humid environments.  Fluorescent Maillard products,

typical of the final stage, first appeared in soybeans held at 40°C, 100% relative humidity

after ten days.  Amadori product appeared in soybeans held at 30°C and 75% relative

humidity after 7 days.  However, fluorescent Maillard products never appeared in

soybeans held at these cooler conditions for 28 days.

Similar symptoms of concealed damage have been observed and studied in many other

seeds that were subjected to warm and moist environments (Priestly, 1986).  In wheat

germ, McDonald and Milner (1954) observed a browning reaction accompanied by

decreases in protein, indicating non-enzymatic browning.  As mentioned earlier,

Wettlaufer and Leopold (1991) observed marked increases in Amadori product and

fluorescent Maillard reaction products in soybeans after exposure to warm and moist

conditions.  In the field of seed technology, products of non-enzymatic browning are used

to indicate seed deterioration after long periods of storage or after improper storage. 

These parameters can then be used to predict seed germination rates and vitality.

Interior browning of macadamia nut kernels associated with moisture exposure at harvest

time was studied by Prichavudhi and Yamamoto (1965).  Increased reducing sugars in

macadamia nuts were observed after exposure to moisture.  Furthermore, reducing sugar

concentration was found to be higher in the center of the kernel, where the darker

browning occurs, than the lighter colored outer layer.  It was also found that browning

increased with higher drying temperatures.  When macadamia nuts were dried with

ambient air or air heated to 52°C it was found that 15% and 17% of the nuts respectively

had brown centers.  In contrast, when nuts were dried at 60°C or 71°C, 100% of the nuts

had brown centers.  The concealed damage like symptoms in macadamia nuts were also

found to be due, at least in part, to enzymatic activity.  No browning appeared in freshly

harvested blanched samples of nuts later exposed to moisture, drying, and roasting

treatments while significant browning appeared in control nuts that were not blanched.
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In almonds, Reil et al. (1996) noted significant increases in reducing sugars and

concealed damage after exposure to simulated rainfall.  Like most other seeds during a

normal harvest, there are no reducing sugars in almond kernels.  In the case of cereal

grains, glucose can be formed by enzymatic hydrolysis of starch.  In the case of pulses,

enzymatic catalyzed oxidation of lipids can form aldehydes that react with amino acids

just as reducing sugars do (Eskin, 1990).  Lipid conversion generally occurs  faster than

starch conversion in seeds (Bushuk and Lee, 1978) and enzymatic lipid oxidation

increases linearly with water activity.  Since approximately 50% of the almond weight is

due to lipids, this may be the most significant source of reactants resulting in concealed

damage.  Almonds do contain approximately 5.8% sucrose (Soler et al., 1989) and some

of the sucrose may hydrolyze when an almond takes in moisture.  However, Maillard

browning from sucrose systems will be limited because sucrose hydrolysis decreases in

basic conditions.  The initial carbon - amine reaction requires the amine group to be

protonated.  This is more likely in basic conditions.  Also, reducing sugar concentration

in their open chain form is increased in basic environments.  For these reasons, sucrose is

often used in food systems where it is desired to avoid Maillard browning.

Almonds in the field probably do not encounter enough heat to carry the Maillard

reaction through the final stage.  From literature describing the Maillard reaction in other

seeds, it seems feasible that after wet nuts from the field are dried, the first stage of the

Maillard reaction progresses through with Amadori product production.  Possibly the

intermediate stage begins in the dryer with fragmentation of Amadori products into

dicarbonyl compounds.  After a rain, almonds in windrows may be exposed to continuous

moist conditions at temperatures between 20°C and 35°C for several days.  Under these

conditions, the increased moisture provides mobility for the Maillard reaction to begin. 

If nuts undergo the beginnings of the first stage of the reaction in the orchard, then drying

can carry the reaction through to the beginning of the intermediate stage.  The final stages

will be completed during roasting or cooking because the high temperatures will drive

the reaction at low moisture.  At harvest time, almonds on the tree typically will have a

kernel moisture content of 5% to 7% dry basis (Soler et al., 1989).  Almonds received by

the processor containing higher moisture contents are dried in either a batch dryer at
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about 54°C or a continuous flow dryer with a  temperature range between 93°C and

121°C (Thompson et al., 1996).  Almonds at various processors are subjected to different

drying regimes.  Thus, the progression of the Maillard reaction in almonds during drying

may vary widely from processor to processor and from dryer to dryer.  It is unknown, but

possible, that different drying processes have an effect on eventual extent of concealed

damage.

Maillard browning can be controlled by chemical and physical treatments, none of which

the almond industry utilizes.  Maillard browning is controlled in egg and potato products

by adding glucose oxidase, an enzyme that causes destruction of glucose.  Sulfites may

be introduced to foods as a gas or in solution to bind to the carbonyl group and prevent it

from reacting with an amino acid.  Browning may be prevented if foods are dried slowly

but completely before exposure to high temperatures associated with cooking or frying. 

Almonds are typically dried down to 6% moisture, then stored, then cooked or roasted. 

Normally, brown pigments in almonds will not form during the drying process. 

Browning after cooking or roasting might be prevented if wet almonds are initially dried

to a lower moisture than the current standard of 6% w.b. with a low temperature

operation as was discussed by Eichner et al. (1985).

As mentioned earlier, there has been no formal investigation of the physical and chemical

properties of almonds with concealed damage.  However, there has been extensive

research on almond nutrition after several processing stages as shown in table 3.1.1.  As

can be seen from table 3.1.1, there are no significant differences in sugar content, basic

amino acid content, protein content or oil content due to heat processing.  These tests

were presumably performed on normal almonds.  If concealed damaged nuts were

included in the samples, the amount of concealed damaged nuts would be likely be

relatively low, so chemical changes in the concealed damaged nuts might not show up in

these results.
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Table 3.1.1. Almond nutrition data at various processing stages.
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histidine (mg) 522 558 - 477 510 560 - - -

arginine (mg) 2570 2495 - 2270 2500 2560 - - -

protein (g) 20.7 19.9 20.0 20.0 21.1 22.3 21.3 20.7 21.1

oleic acid (g) 31.6 - 36.5 - - - 33.07 33.0 31.7

linoleic acid (g) 13.1 - 9.86 - - - 13.23 12.9 13.8

linolenic acid (g) - - 0.26 - - - - 0.05 - -

total fat (g) 50.4 52.2 52.2 - 50.6 58.0 53.2 57.5 56.9

polyunsaturated 

fat (g)
11.6 10.9 - - - - 13.7 9.3 - 9.6

Note: all quantities are per 100g of almond dry matter.

3.2 Quantification of Maillard reaction products

Quantification of the extent of the early Maillard reaction, well before browning occurs,

is important in the nutrition sciences because lysine bound to a sugar likely won’t be

nutritionally available.  Over the past three decades several chemical and microbiological

tests have been developed to determine the concentration of nutritionally available lysine

in foods.  It has been found that most of the protein bound lysine that is bound to an
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aldehyde is not nutritionally available with normal digestion by humans (Cheftel et al.,

1985).  In the course of developing rapid chemical methods to determine nutritionally

available lysine, the term "reactive lysine" has been introduced (Hurrel et al., 1979). 

Reactive lysine is defined as lysine with an unbound open side chain.  After an aldehyde

reacts with lysine, the reaction rapidly progresses to a Schiff's base and Amadori product. 

Thus, there is usually a good correlation between reactive lysine, available lysine and the

extent of the early stage of the Maillard reaction.

The application of several tests to determine reactive lysine after a Maillard reaction were

reviewed by Hurrell and Carpenter (1981).  Most tests to determine reactive lysine

involve dye binding to the open side chain of the lysine molecule.  However, all of the

dyes used can, to a limited extent, bind to Amadori products as well.  This results in

underestimating the extent of the early Maillard reaction and overestimating reactive

lysine.  To account for this problem when the Maillard reaction is involved, Hurrel et al.

(1979) developed a two step dye binding procedure that first measures lysine as well as

everything else that the dye binds to.  In the second step, reactive lysine is bound with

propionic anhydride, a compound that very specifically binds to reactive lysine and

prevents dye from binding with lysine.  The dye binding procedure is applied again to the

propionic anhydride treated sample.  This measures everything that the dye binds to

except the reactive lysine.  The difference in the first measurement and second

measurement results in total reactive lysine.  This procedure has been tested on fish,

meat, milk, peanut, and beans and compares favorably with the more traditional but

complicated procedure of fluorodinitrobenzene (FDNB) dye binding as described by

Booth (1971).

The final products of the Maillard reaction have been monitored and quantified by

several methods.  The most common method, degree of browning, simply measures light

absorption at 420 nm or 490 nm after a heat treatment.  Degree of browning has been

shown to be highly correlated with the accumulation of early Maillard products or

reactive lysine (Labuza and Baisier, 1992 and Pokorny, 1981).  Thus, degree of browning

can be used to determine the effectiveness of a treatment to prevent browning.  For
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example, if a treatment is devised to inhibit the initial stage of the Maillard reaction, then

the treated and control samples can be cooked under the same conditions and degree of

browning compared.  This can be less time consuming and more indicative of overall

effectiveness than measuring early Maillard products by chemical methods. 

Another method to quantify the extent of the Maillard reaction is fluorescence

measurement at 440 nm when excited by 370 nm light.  This was used to quantify

Maillard products in soybeans by Wettlaufer and Leopold (1991).  Adhikari and Tappel

(1973) observed a 500% increase in fluorescence in glucose-glycine model systems

heated 10 minutes at 100°C.  They also observed increases in fluorescence in coffee after

roasting and white bread after toasting.  The fluorescent substances appear before the

brown pigments, are not identical to the brown pigments, and diminish as brown

pigments increase.  For these reasons, fluorescence is not commonly used to quantify the

extent of the Maillard reaction in food systems (Labuza and Basier, 1992). 

As can be seen on figure 3.1.1, there is an increased number of N-C bonds during the

initial stage of Maillard browning.  This increase is due to formation of Amadori

products and Schiff's base.  These two browning compounds are likely to be found in

concealed damaged almonds after drying.  There are several absorption bands of N-C

bonds in the near infrared spectrum (Murray and Williams, 1987).  The absorption bands

are listed below in table 3.2.2  This seems to be a promising method to detect early

Maillard reaction products.  However, there is nothing reported in the literature

indicating the feasibility of this method.
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Table 3.2.2.  Absorption bands of N-C bonds in the near infrared region

wavelength (nm) overtone note
1160 III isolated

1500 I N-H interference

1520 III isolated

1555 II N-H interference

1785 III isolated

1855 III isolated

1925 III isolated

2035 II isolated

2330 I isolated

3.3 Fatty acid quality tests

Unsaturated fatty acids, or those containing double carbon bonds, are much more likely

to oxidize than saturated fatty acids.  During the oxidation process, a portion of the fatty

acid can break off, forming a smaller fatty acid, with one less double carbon bond, and a

smaller hydrocarbon molecule.  For a specific type of food, the ratio of saturated fatty

acids to unsaturated fatty acids is fairly constant before oxidation begins.  As can be seen

from table 3.1.1, most of the fatty acids in almond oil are oleic acid, which has one

double bond, and linoleic acid, which has two double bonds.  There are several methods

to quantify the number of double bonds, or changes in double bonds, in a sample of oil

from foods.  Some of the common methods are: Fourier transform infrared spectroscopy,

gas chromatography, iodine value, and refractive index (Pike, 1994).  Of these methods,

gas chromatography and the iodine method can measure the actual number of double

bonds in a sample while refractive index is correlated to the number of double bonds in a

sample (Hunt et al., 1951).  Refractive index can not be used to compare the oxidation

level of oil samples extracted from different types of foods, but only from the same type

of food (Pomeranz and Meloan, 1994).  For example, refractive index can be used to

compare oxidation in oils from different almond samples but not between almonds and

pistachio nuts because the fatty acid contents of these nuts are different.  However,
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refractive index is much easier and faster than gas chromatography or iodine value

methods.

3.4 Real-time detection of food quality

The almond industry currently utilizes a variety of high speed opto-electronic devices to

perform automated quality control inspections on individual nut kernels.  There are

devices which use X-rays to separate rocks, glass, steel or other high density foreign

matter from almond kernels.  However, most devices use reflected light to inspect the

surface condition of the nut.  Visible, UV, and near infrared detectors are used to detect

surface defects such as skin discolorations, broken skin, insect damage, or embedded

shell fragments.  However, none of these reflectance or x-ray based devices can detect

nuts with concealed damage. 

Development of rapid techniques for measuring food constituents is a growing field. 

Much has been reported in the literature about measurement of proteins, amino acids,

lipids and sugars with near infrared reflectance and transmission spectroscopy.  For

example, Rubenthaler and Bruinsma (1978) found that lysine could be accurately

detected in ground samples of wheat using near infrared reflectance.  Letellier and Cuq

(1991) developed a near infrared reflectance system to determine reactive lysine in wheat

flour after heating.  Using only four wavelengths, a coefficient of correlation of 0.98 was

obtained with reactive lysine dye-binding results.  The wavelengths used to obtain this

correlation coefficient were 2348 nm, 1940 nm, 1759 nm, and 1680 nm.  Delwiche

(1995) recently developed a near infrared (850 nm to 1050 nm) transmittance method to

detect protein content in individual wheat kernels.  The predicted protein content had a

correlation of 0.85 to 0.93 to the actual protein content.  Random orientation of the wheat

kernel created the largest source of prediction error.  Orman and Schumann (1992)

developed a method of determining oil content in single kernels of maize by near infrared

(850 nm to 1050 nm) transmission spectroscopy.  The standard error of prediction was

only 1.2% and the error was not correlated with seed thickness.  Lastly, Lamb and

Hurburgh (1991) determined moisture content in single soybeans with near infrared light

transmittance.
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To date, there have been few developments reported in the  literature using a whole

spectrum method of data calibration in a real-time, high throughput, situation.  This is

likely to change with the relatively recent developments in low cost grating type

spectrometers using diode array or CCD sensor elements.  These devices enable

moderately high wavelength resolution (less than 1 nm) and rapid data collection. 

Depending on the amount of light incident upon the detector, a whole spectrum

comprising 1024 points can be collected in 5ms with a sampling frequency of 200kHz. 

Higher sampling frequencies can be used if the light is available to maintain a sufficient

signal to noise ratio.  There are two considerations to be made when choosing a detector

for rapid spectroscopic measurements of transmitted light.  One is response time and the

other is signal to noise ratio in low light situations.  For low light level applications,

charged coupled devices (CCD) are preferred in the visible and near infrared region up to

about 1050 nm.  At longer wavelengths their sensitivity diminishes.  In the region

between 1100 nm and about 1800 nm, InGaAs diode arrays are preferred.  The

digitization, data filtering, deconvolution, and prediction of chemical concentration could

be performed concurrently with the data collection from a sensor array.  Thus, a predicted

chemical quantity can be output nearly at the instant the spectral data is collected. 

Pearson (1996) used such a concurrent processing scheme in a digital image processing

application with a line scan CCD camera being sampled at 200kHz.

3.5 Interaction of light with matter

Molecules in matter constantly vibrate at frequencies corresponding to light frequencies

in the infrared region of the electromagnetic spectrum.  When a molecule absorbs light,

its vibrational, rotational, or electronic energy will increase by the amount of energy

within the absorbed photon.  The electronic absorptions occur in the UV and visible

portion of the spectrum while absorptions due to vibrational and rotational energy occur

in the infrared region. Vibrational motion has two different modes.  The first, stretching,

is a movement of atoms away and towards each other along a line such as an oscillating

spring.  The second mode, bending, is a movement of an atom or group of atoms that

causes a change in bond angle.  This can be in the form of twisting, wagging, scissoring,

or rocking.  Rotational energy refers to molecular spinning about its axis.  There are
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many modes which light can be absorbed by matter.  For a nonlinear molecule, which

comprises most food molecules, there are 3n-6 modes in which light can be absorbed,

where n is the number of atoms in the molecule.

Molecules will only absorb light at frequencies that correspond to their own vibrations or

rotations.  When this occurs, the energy level of the molecule is raised to a higher level. 

If the absorbed light is of a sufficiently high energy, the molecule's excited energy state

will be raised two or three levels.  If light of wavelength "X" in the infrared region raises

a molecule's energy level from the ground state to the next highest, then light of

wavelength 1/2X will raise the energy state two levels and light of wavelength 1/3X will

raise the energy state three levels and so on.  The light at wavelength X is referred to as

the fundamental absorption band.  The light at wavelengths of approximately 1/2X and

1/3X are called the first and second overtones, respectively.  The actual wavelengths of

the overtones deviate slightly from the integer multiples of the fundamental absorption

band because the vibration of covalent bonds does not ideally adhere to Hooke's law

(Murray and Williams, 1987).  The vibrations are not confined to simple harmonic

motion.  Absorption at fundamental frequencies is often very high and light at these

frequencies will not transmit through thick media, such as a whole almond or most other

whole foods (Murray and Williams, 1987).  Food matter is mainly comprised of carbon,

oxygen, hydrogen, nitrogen, phosphorus, sulfur and other trace elements.  Most of the

overtones of bonds between the main food elements occur in the near infrared region,

between 1000 nm and 2500 nm. 

Light absorption is commonly modeled with the Beer-Lambert law (Murray and

Williams, 1987).  Referring to figure 3.5.1 the light intensity I  decreases due to

absorption and scattering as it travels through a medium as shown in equation 3.5.1



19

dJ KJdx SJdx SIdx= − − + ( . . ).35 2

( ) ( )
I
I

e e

d

o dx dx
d d=

+ − −∫ ∫
4

1 1
353

2 2
0 0

β

β β
γ γ

( . . )

Figure 3.5.1.  Schematic for light absorption and scattering (Birth and Hecht, 1987).

where K is the absorption coefficient of the media at location x, I is the light intensity at

location x where x is the location inside the medium parallel to the incident ray Io, S is the

scattering coefficient, and J is the scattered light intensity.  The first term of equation

3.5.1, KIdx, is due to absorption, the second term, SIdx, is due to scattering, and the third

term, SJdx, is due to scattered light returning back to the same direction as Io.  Similar to

equation 3.5.1, the differential equation for the scattered light is given by equation 3.5.2

Referring back to figure 3.5.1, the boundary conditions for equations 3.5.1 and 3.5.2 are 

I = Io at x=0, and J=0 at x=d (Birth and Hecht, 1987).  The solution to the two

differential equations to get the light intensity, Id, emerging in the same direction as Io

from the media is given by equation 3.5.3

where 

γ = +K K S( ) ( . . )2 35 4

β = +
K

K S( ) ( . . ).2 355

For non-scattering media S=0, (=K and $=1.  It is usually assumed that ( is independent

of x.  The absorption coefficient, K, is the product the molecular extinction coefficient, k,
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and the chemical concentration, c, in the transmitting media. The molecular extinction

coefficient is a function dependent on the type of molecules in the transmitting media and

the frequency of the light, Io.  These assumptions lead to a simplified and commonly used

form of the Beer-Lambert Law shown in equation 3.5.6 and 3.5.7 (Murray and Williams,

1987)

The value Id/Io is commonly called transmittance and the value log(Io/Id) is commonly

referred to as absorbance.  In non-scattering samples, absorbance is more commonly used

than transmittance because of the linear relation with concentration, c.  If a sample is

known to be pure or without interfering compounds, the calibration of absorbance to

concentration is relatively straight forward with simple linear regression.  However,

when light is transmitted through a whole food, such as an almond, there are many

problems that must be overcome.  When light is incident upon a whole food, some is

reflected at the surface (specular reflectance), some light penetrates the surface but is

reflected back towards the light source at an oblique angle (diffuse reflectance), while

other light is absorbed, and other light is transmitted.  The proportion of light that is

reflected varies depending on the surface conditions.  Light that is transmitted is subject

to varying degrees of scattering due to different water contents, oil contents, pore sizes,

refractive index, crystalline forms and sample shape (Murray and Williams, 1987).  This

makes it difficult to ascertain the path length the light traveled when transmitting through

the sample.  In the near infrared region of the electromagnetic spectrum, overlapping

absorption overtones from other molecules occurring in varying concentrations make it

nearly impossible to determine a chemical concentration without statistical treatment. 

Nevertheless, the near infrared region is desirable for quantitative analysis in foods

because the absorption bands in this region are primarily due to second and third

overtones and there are low cost sensors readily available for this region.  Light
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absorption in the near infrared region is low enough that light can be transmitted through

a sample, such as a whole almond, while the absorptions are specific enough to predict

chemical concentration using appropriate mathematical data treatments.  Another

advantage of near infrared spectroscopy is that the photodetectors, currently available for

this region of the spectrum, have high signal to ratios compared to detectors for other

regions of the spectrum.

3.6 Multivariate calibration techniques

A calibration using absorptions at multiple wavelengths is usually required to quantify

the chemical concentration in food.  If too few absorption factors are used, some

interferences will remain uncorrected and the correlation may be poor.  However, if too

many factors are used, the prediction will start modeling noise in the calibration data set

(Martens and Naes, 1987).  Deconvolution of the spectra is often computed to overcome

the problems of overlapping absorbance peaks and shifting baselines.  The second

derivative is a common and rapid method of deconvoluting a spectrum.  Derivatives can

also reduce the effect of spectral shifts due to path length or scattering.  However,

derivatives are very sensitive to noise, becoming more sensitive as the derivative order is

increased.  Often the spectral data must be low pass filtered before deconvoluting. 

Nevertheless, modern spectrometers have sufficient signal to noise ratio that the second

derivative can be reliably used.

There are many procedures available to determine the absorption factors needed to

develop a prediction equation.  The most common methods are stepwise multiple linear

regression (SMR), partial least squares regression (PLS), and principle component

regression (PCR).  All of these methods utilize different methods to select variables from

the spectra or transform the spectra into factors to develop a  prediction equation for

sample chemical concentrations.  Spectra usually contain large numbers of data points,

1000 to 2000 points are not uncommon, and high degrees of multicollinearity are often

present in spectral data.  These two characteristics of spectral data make it difficult to

select the best features within the spectra to use in a prediction equation.  
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Partial least squares regression has gained recent popularity because it is suitable for use

with smaller sample sizes and is more robust in the presence of experimental noise in the

spectra and chemical data (Martens and Naes, 1987).  Like PCR, the PLS method

transforms the data to orthogonal linear combinations of the entire spectrum.  In PCR, the

transformation is independent of the chemical concentration in such a way that the first

factor describes the greatest amount of variance in the spectra.  The transformation in

PLS links the chemical data and spectra together during the transformation.  The PLS

transformation describes the variance in absorbance data that are relevant to the chemical

data variations.  Because of light scatter or other chemicals of variable concentrations,

the absorbance spectra may contain a high level of  variance that is irrelevant to the

prediction of chemical concentrations.  The PLS procedure takes measures to ignore

these irrelevant sources of variance, even though they may be the dominate sources in

variance of the absorbance spectra (Haaland and Thomas, 1988).  Several PLS algorithms

have been developed.  PLS1 was developed to relate one chemical variable to the

absorbance data. PLS2 was developed to relate more than one chemical variable to the

absorbance data.  An advantage of SMR over PLS and PCR is that the whole spectrum

does not have to be acquired to perform a prediction of chemical concentration after the

calibration is performed.  

In addition to these methods which in one way or another involve regression,

discriminant analysis techniques can be used to classify samples into discrete groups

(Mark and Tunnell, 1985).  A discrete classification procedure may be more appropriate

than regression procedures when it is desired to classify a sample into one of a few

different categories.  Discriminant analysis has been widely used for this purpose in the

field of image processing.  However, as with the regression procedures, the problem of

selecting which variables to use is complicated by multicollinearity in the data set.

Equation 3.6.1 shows a general model using stepwise multiple regression to determine

the concentration of a chemical from a spectrum

c = Ap + ec           (3.6.1).
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Letting m be the number of calibration samples and n being the number of spectral

variables (wavelengths), c is a m x 1 vector of chemical concentrations, A is a m x n

matrix of calibration spectra including transformations such as second derivative or ratios

of absorbance values, p is a n x 1 vector of unknown calibration coefficients, and ec is the

m x 1 error term.  The number of spectral variables, n, is reduced as much as possible by

stepwise selection procedures.  The most popular of these procedures performs a general

F test to accept or delete a variable in the model.  Once the number of variables are

settled upon, the solution for p that minimizes the error term is given by equation 3.6.2

p = (AtA)-1Atc         (3.6.2).

The computation of these matrix equations are straightforward and most statistical

packages perform these computations almost automatically.  The difficult aspect of SMR

is choosing the variables in the A matrix that will give the best prediction equation.  The

procedure for stepwise variable selection is as follows.  The model starts with the single

variable that has the highest correlation with the chemical data.  Next, the F statistic is

computed for all variables not in the model for their individual contribution to the model. 

The variable with the highest F statistic is added to the model as long as the F statistic

exceeds a preset threshold.  Next, individual contribution of the variables already in the

model are checked.  If a variable already in the model does not produce a significant F

statistic, it will be removed from the model.  The procedure keeps checking F statistics to

add or delete variables from the model and quits when no variables in the data set can be

added or deleted.  Multicollinearity can prevent the stepwise procedure from picking the

best set of variables for the prediction equation.  The purpose of the PCR or PLS routines

is to eliminate multicollinearity so that variable selection will be more straightforward.

The model for PLS and PCR procedures, given by equation 3.6.3, is similar to the SMR

model given by equation 3.6.1

c = Tp + ec        (3.6.3)
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where c, p and ec are the same as with the SMR procedure.  Letting h be the number of 

scores, or transformed spectrum factors, T is a m x h matrix of the transformed spectral

data.  Again, the number, h, of variables used in the model is minimized with a stepwise

selection or similar technique.  In PCR analysis, the linear transformation of A is given

by the eigenvector of the covariance matrix of A.  Letting vj be the j'th eigenvector of the

covariance matrix of A, then the transformed spectrum of the i'th sample with the j'th

eigenvector, ti,j, can be computed with equation 3.6.4

ti,j = aivj         (3.6.4)

where ai is the spectrum of the i'th sample.  The matrix T is the transformed spectra from

all the samples and from h eigenvectors.  Members ti,1 explain the greatest percentage of

variance in the spectrum for the particular sample set.  Members ti,2, ti,3 and so forth

explain less variance.  If the matrix, T, contains as many columns, n, as there were

variables in the original spectrum, then 100% of the variance in the original spectra can

be explained.  A benefit of PCR is that often less than twenty variables will explain

nearly 99% of the variance of the original spectra that might contain 2000 or more

absorbance values.  Since the members of matrix T are independent, stepwise multiple

regression can be preformed on this set of data without problems associated with

multicollinearity.

The computation of the transformed spectrum with PLS is more complex than with PCR. 

It involves a series of least squares solutions and is performed iteratively in order to

compute all the variables desired.  The first pass computes a score that maximizes both

the variance explained in matrix A and correlation with c.  The second pass replaces A

with the error term in the final regression model, EA.  The error term is modeled again

and again until the desired number of terms is reached.  The scores are independent of

each other because, by nature of regression, the error terms are independent.  The PLS

algorithm is explained in detail by Haaland and Thomas (1988) as well as Martens and
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Naes (1987) and only briefly described here.  First, A and c are centered by subtracting

them from their means to form Am and cm.  A weight loading vector, wj
t, for the i'th factor

is computed using the least squares solution of equation 3.6.5

Am = cmwj
t + EA        (3.6.5).

A score vector, tj, is similarly computed by another least squares solution of equation

3.6.6

Am = tjwj
t + EA         (3.6.6).

Another score vector vj is created to relate tj to the chemical concentrations with a least

squares solution to equation 3.6.7

cm = tjvj  + ec        (3.6.7).

Vector, bj, is the PLS loading vector for matrix A.  It is computed with a least squares

solution to equation 3.6.8 and the error terms are computed with equations 3.6.9 and

3.6.10

Am = tjbj
t + EA        (3.6.8)

EA = Am - tjbj
t        (3.6.9)

ec = c - vjtj        (3.6.10).

At this point, EA is substituted for A, ec for c, j is incremented, and the above procedure is

repeated until the desired number of loading factors is reached.  Letting W and B be

matrices composed of j rows containing wj and bj respectively, a v is formed from the

individual vj terms, the PLS regression coefficients, r, are computed with equation 3.6.11
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r= Wt(BWt)-1v         (3.6.11)

and finally, the predicted chemical concentration is computed with equation 3.6.12

‡= atr  + co         (3.6.12)

where co is the average chemical concentration of the calibration samples.  Like PCR, the

PLS procedure vastly reduces the number of variables needed for calibration as compared

to the original spectrum.  The advantages of PLS over PCR is that it will usually yield

equivalent or superior prediction results with fewer variables than PCR (Martens and

Naes, 1987).

Discriminant analysis differs  from the previously discussed regression procedures in that

it is used to classify samples into one of two or more discrete groups.  In discriminant

analysis, a sample is classified into a group based on a concept called the generalized

distance, or distance between the sample and group centroid.  The smaller the generalized

distance between a sample and the group centroid, the more likely that the sample

belongs to that group.  Referring to figure 3.6.1, the Euclidian distance between two

points, A and B, in two dimensional space can be computed by the Pythagorean theorem

as shown in equation 3.6.12

In vector notation, the distance between two points is given by equation 3.6.13

where A and B are vectors from the origin to points A and B, respectively.  In two

dimensional space, both A and B are 2 × 1 column vectors.  More generally, in p-variate

space, both A and B would be p × 1 vectors.  
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Figure 3.6.1.  Distance between two points in a plane.

The generalized distance accounts for the variance of each group.  As can be seen from

the one dimensional example in figure 3.6.2, the Euclidian distance between the sample,

x=S and mean of group A is less the distance from S to the mean of group B.  However,

the probability of sample S belonging to group B is higher than for group A due to the

variance associated with each group.  

Figure 3.6.2.  One dimensional example of generalized distance between two groups.

In contrast to the computation of the Euclidian distance, the covariance matrix, S, is used

in the computation of the generalized distance.  Equation 3.6.14 is used to compute the
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generalized distance between a sample, defined by vector X, and group centroid, defined

by vector XA (Huberty, 1994)

Samples can be classified into groups based on their generalized distance to each group. 

For example, if the generalized distance from a sample is computed to two different

groups, A and B, then the sample would be classified into group A if DA < DB.  However

in practice, the probability, P(A|X), of sample X being a member of group A is used for

classification.  The estimated p-variate normal probability density function is given by

equation 3.6.15

where XA is a p × 1 vector describing the location of the mean of samples known to

belong to group A, and SA is a p × p covariance matrix for samples known to belong to

group g.  The values of XA and SA are obtained from a training set of samples known to

belong to group A.  When a multivariate normal population can be assumed, the posterior

probability, P(A|X), to classify sample X into group A is given by equation 3.6.16 when

there is a possibility of classification into k different groups
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The factor, qg, is called the a priori probability that a sample is a member of group g

without knowing anything about a particular sample.  The values of the a priori

probabilities are obtained from a training set or other prior knowledge of the population

distributions.  Classification using a posteriori probabilities is performed by computing

the a posteriori probability for membership of all groups and classifying the sample into

the group having the largest a posteriori probability.

As with the regression procedures, the difficulty of obtaining an optimal classification

equation is in selecting the best, p-variate, set of variables to use.  The large size of

spectral data sets and multicollinearity make selection of the best set of variables difficult

for the classification equation.  Stepwise procedures for variable selection similar to

those used with stepwise regression are available but not recommended in the presence of

multicollinearity (Huberty, 1994).  As with regression, one way to overcome the problem

of multicollinearity is to transform the data into principle components, then use the

stepwise procedure to select the best principle components for the classification. 

3.7 Digital sampling of analog data

Digital sampling of data is required for most light measurement applications. 

Understanding of sampling theory is important, especially when frequency domain

filtering is to be used.  Several references on sampling theory are available, most of the

following discussion is taken from Bringham (1988).  There are three main issues that

must be addressed when frequency domain information is to be obtained from digitally

sampled data: (1) scaling or correspondence of the discrete Fourier transform to the

analytical frequency spectrum, (2) aliasing errors, and (3) leakage errors.  

A periodic signal, f(t), with period To, can be analytically expressed as an infinite sum of

periodic sine and cosine functions, called the Fourier series,  as shown in equation 3.7.1
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where:

Defining , thenC a jb jn n n= − = −  where 1

The magnitude of Cn is the amplitude at frequency nTo, and the set of coefficients, {Cn},

are called the frequency spectrum of f(t).  The Fourier transform for a periodic function

with period To is defined by equation 3.7.7.  Usually the Fourier transform and frequency

spectrum of periodic signals differ only by a scaling factor.
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Figure 3.7.1.  Graphical representation of a discrete Fourier transform of a band limited
periodic waveform with square window function equal to one period. From Bringham
(1988).
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In figure 3.7.1(a), a band limited periodic waveform, f(t), with period To and its

corresponding analytical frequency spectrum are displayed.  In figure 3.7.1(b), is a

sampling function, )(t), and its corresponding frequency spectrum.  The sampling

function is defined as an infinite series of impulse functions with a period Ts.  In figure

3.7.1(c), the sampled wave form is shown as the product of the initial wave, f(t) and the

sampling function, )(t).  The frequency spectrum of the sampled waveform, f(t))(t),

shown in figure 3.7.1(c), is the convolution of the two individual frequency spectrums of

each function, F(f)()(f).  Figure 3.7.1(d) displays the window function, w(t) and its

frequency spectrum, W(f), used during sampling.  The shape of the function for this

example is rectangular and its duration, Tw, is for one period of the sampled waveform,

f(t); however, as will be discussed later, other window functions may be preferentially

used.  Regardless of the shape, the duration of the window function also dictates the

number of samples, N, that will be taken.  In the time domain, multiplying the window

function to the sampled waveform then gives a finite length sampled waveform,

f(t))(t)w(t), as shown in figure 3.7.1(e).  In the frequency domain, the three individual

frequency spectrums are convolved, F(f)()(f)(W(f), also shown in figure 3.7.1(e). 

Analytically, this is the frequency spectrum of the finite duration sampled waveform. 

Note that this frequency spectrum, figure 3.7.1(e), is quite different than the frequency

spectrum of the original waveform, F(f), shown in figure 3.7.1(a).  This is due to the

discontinuity created by the edges of the finite duration sampled waveform, f(t))(t)w(t). 

Correspondence between the analytical frequency spectrum, F(f), and the finite duration

sampled waveform, F(f)()(f)(W(f), is obtained by multiplying F(f)()(f)(W(f) by a

dummy frequency sampling function, )N(f), with a period of 1/Tw.  The frequency

sampling function, )N(f), and its corresponding time domain function, )N(t), are shown in

figure 3.7.1(f).  The function )N(t) is an infinite series of impulse functions with period

equivalent to the duration of the window function.  Since the frequency sampling

function, )N(f), was mathematically multiplied to F(f)()(f)(W(f) in the frequency

domain, it is convolved with f(t))(t)w(t) in the time domain as shown in figure 3.7.1(g). 

In this example, the duration of the sampling window, w(t), was an integer multiple of the

period, To, of the original waveform, f(t), the convolution, [f(t))(t)w(t)]()N(t), results in a

smooth replica of the original sampled waveform, f(t))(t). This leads to a frequency
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spectrum that is scaled by To/Ts from the analytical frequency spectrum.  However, if the

sampling window duration were not an integer multiple of the input signal’s period, or if

the input signal was random or noise contaminated, then discontinuities would exist in

the result of  [f(t))(t)w(t)]()N(t), and these would distort the resulting frequency

spectrum.  This effect is called leakage error.

Under many conditions, a signal to be sampled is not bandlimited due to noise or by the

inherit nature of the signal.  Under these conditions, leakage errors are unavoidable but

can be greatly reduced by the use of different window functions, such as the Hanning

window as shown in figure 3.7.2 and defined in equation 3.7.8

Figure 3.7.2.  Hanning window function.
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The Hanning window assures that there will be no discontinuities in the frequency

sampled time domain result of [f(t) )(t)w(t)]()N(t).  However, the resolution of the

sampled frequency spectrum between frequencies 0 and To/2 will be diminished.  This is

due to the broader side lobe in the frequency spectrum of the Hanning window than the

rectangular window function.  During convolution in the frequency domain of the

sampled waveform with the window function, [F(f)()(f)](W(f), more of the data is

“smeared” together due to the broader side lobe on the Hanning window.  Obtaining

more samples from the original waveform can help overcome this problem.

3.8 Computation of the discrete Fourier transform

The sampling function was defined as an infinite series of impulse functions so the

product of the original waveform f(t) with the sampling function )(t) is computed as

shown in equation 3.8.1

For the sampling window, it is assumed that there are N equally spaced samples within

the sampling duration, so N = Tw/Ts.  Equation 3.8.2 shows the result of multiplying a

rectangular sampling window with equation 3.8.1

Lastly, the sampling of  F(f)()(f)(W(f) in the frequency domain is accounted for.  In the

time domain, this is accomplished with convolving the sampled and truncated wave of

equation 3.8.2 with the sampling function, equation 3.8.3,  in the time domain.  The result

is shown in equation 3.8.4 and 3.8.5
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The discrete Fourier transform of  can now be computed with equation 3.8.6~
( )f t

Choice of the sampling frequency is constrained on the low end by the Nyquist sampling

theorem which states that data must be sampled at a minimum frequency of twice the

bandwidth of interest to avoid aliasing.  Sampling frequency and number of samples, N,

are usually chosen to achieve the desired frequency resolution of the discrete Fourier

transform which is 1/NTs.  

Equation 3.8.6 shows the computation of the discrete Fourier transform if the sampling

window is rectangular.  However, it is often desirable to use other sampling windows,

especially the Hanning window.  It can be shown that when a Hanning window is used,

equation 3.8.6 should be multiplied by a scale factor of (Bendat and Piersol, 1986)8
3

to obtain the correct magnitude of the Fourier transform.  

If it is desired to compute the discrete Fourier transform at all possible frequencies, then

it is usually more computational efficient to use the fast Fourier transform (FFT)

algorithm.  The result of the FFT is the same as the discrete Fourier transform but the

number of computations are minimized.  A constraint of the FFT algorithm is that the

number of samples, N, must be a power of 2, so that N=2p, where p is any positive

integer.  The number of multiplications required for FFT procedure is equal to Np while

the number of multiplications with the discrete Fourier transform is equal to N2.  Another

constraint of the FFT is that all of the samples must be obtained in order to start the

computations.  If the sampling rate is sufficiently slow, then the computations of the

discrete Fourier transform as shown in equation 3.8.6 can be carried out between samples

so that the Fourier transform will be complete upon finishing the sampling.  Finally, if the
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entire Fourier transform is not required, that is, if the magnitude at only a few specific

frequencies in the Fourier transform are of interest, then it may also be more efficient to

compute the discrete Fourier transform with equation 3.8.6, especially if the

computations can be computed between sampling points.

3.9 Light detectors

There are two main mechanisms of photo detection in widespread use today: the external

photoelectric effect and the internal photoelectric effect (Palais, 1988).  The

photomultiplier tube is an example of the external photo electric effect where electrons

are liberated from the surface of a metal due to the energy absorbed by incident photons. 

Semiconductor devices are examples of internal photo electric effect where free electrons

and holes are generated by absorption of photons.

Vacuum photomultiplier tubes (PMT) are used in very low light level applications.  They

have very fast response times and are not effected by thermal noise sources. 

Disadvantages of PMT’s are high cost, large size, they are fragile and can be significantly

effected by external magnetic fields (Anonymous. 1994b).  A schematic of a PMT is

shown in figure 3.9.1.

 Figure 3.9.1.  Schematic of PMT, from Palais (1988).
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As can be seen in figure 3.9.1, a bias voltage is applied, making the anode positive and

cathode negative.  A minimal amount of current will pass through the resistor when no

light is incident on the cathode.  When light is absorbed by the cathode, energy from the

incident photon is transferred to electrons in the cathode material.  If sufficient energy is

transferred from a photon to electron, the electron will be liberated from the cathode. 

The free electron will accelerate towards the first dynode because it is placed at a higher

voltage than the cathode.  This acceleration causes the electron to collide with the dynode

with a high kinetic energy.  As a result of this high energy collision, two to six electrons

will be liberated from the dynode (Palais, 1988).  These electrons are then accelerated

towards the next dynode and so on until reaching the anode.  The influx of electrons to

the anode cause current to flow through the external circuit and a voltage across the

resistor is proportional to the intensity of incident light on the cathode.

Semiconductor photodetectors are more rugged, economical, and can be contained in a

much smaller package than PMTs.  However, they are not as sensitive as PMTs and their

frequency response is not as fast as a PMT.  The output of a semiconductor photodetector

usually must be amplified which creates another source for noise.  Most semiconductor

detectors are made of silicon and are sensitive to light in the visible and near infrared

region up to 1100 nm (Anonymous, 1994b).  Semiconductor photodiodes can be made

out of other materials to achieve different spectral responses.  For example InGaAs

photodiodes have usable spectral responses between 800 nm and 1700 nm (Anonymous,

1994b).  A schematic of a silicon photodiode is shown in figure 3.9.2.  The diode is

constructed of both n type semiconductor material and p type semiconductor material. 

The n material contains impurities that form covalent bonds with silicon atoms and make

an excess of free electrons.  The p material also contains impurities, commonly boron,

which form covalent bands with silicon atoms but with insufficient electrons creating

voids of electrons.  These voids are called “holes” and serve as positive charge carriers.



38

Figure 3.9.2. Schematic of a silicon photodiode (Anonymous, 1994b).

As can be seen in figure 3.9.2, the region between the n material and p material is called

the depletion region when no light is present.  This region has no free electrons or holes

so current is not carried through this region.  The absorbed energy of a photon passing

through the p material and into the depletion region causes a bound electron in the

depletion region to pass from the valence to the conduction band.  The electron can now

move, creating a hole.  Electrons will move towards the n material and the holes moves

towards the p material, resulting in a positive change on in the p material and negative

charge on the n material.  These moving charges cause a current flow through the output

leads of the photodiode (Palais, 1988).  

There are two modes of operation of a silicon photodiode: photovoltaic or

photoconductive.  In photovoltaic mode, there is no bias voltage applied to the

photodiode and the voltage generated by the migrating electrons and holes is proportional

to the incident light intensity.  The generated voltage usually needs to be amplified by a

high input impedance amplifier.  In photoconductive mode, a reverse bias voltage is

applied to the diode as shown in figure 3.9.2 and the output current is proportional to the

incident light.  The current is usually converted to a voltage with a transimpedance

amplifier.  The response time of a photodiode is faster in the photoconductive mode than

in the photovoltaic mode, but the noise in the photoconductive mode is higher.
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Avalanche photodiodes are usually silicon devices, but like a PMT, have an internal gain. 

Avalanche photodiodes utilize a high bias voltage, 100 to 500V, to facilitate the

multiplication process.  A free electron and hole created by an absorbed photon in the

depletion region is excited to a high kinetic energy by the high bias voltage.  When these

high energy electrons collide with a neutral atom, additional electron hole pairs are

liberated.  These liberated charges can then free other electron hole pairs.  This process is

called avalanche multiplication.  The internal gain of avalanche photodiodes are not as

high as a PMT and their output signals are slightly more noisy than that of a PMT signal. 

However, avalanche photodiodes are more rugged than PMTs and cost less than PMTs

but much more than normal silicon photodiodes.

Photodiode arrays and charge coupled devices (CCD) are comprised of several hundred

to several thousand individual photodetector elements integrated into one package.  The

output of each photodetector is called a pixel.  The photodetector array is commonly

arranged in a single line or in a rectangular arrangement.  Imaging applications widely

utilize CCDs.  Both photodiode arrays and CCDs are also used with grating type

spectrometers for rapid spectrum acquisition.  The design and operation of these array

sensors are discussed by Tseng et al. (1985).  The output of each pixel element flow out

of the array package in a serial fashion.  When the response of all pixels in the array have

been output, the serial output can repeat itself almost immediately.  The electrical

response of each pixel element to the incident light upon it is usually integrated over the

time duration required to output all of the pixel responses of the entire array.  That is,

while a pixel in not being accessed for output, it’s response is being integrated.  The main

difference between a CCD and photodiode array is how the integration and data transfer

physically take place.

A schematic of a photodiode array sensor is shown in figure 3.9.3.  The shift register,

controlled by an external clock, opens one MOS switch at a time to allow reading of each

photodiode element, one at a time.  When a photo diode element is not being read, its

output charges the capacitor adjacent to it.  So the output of each photodiode element is
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proportional to the light intensity integrated over the time duration taken while all of the

other photodiode elements are being read.  

Figure 3.9.3.  Simplified schematic of a linear photodiode array, from Tseng et al. (1985).

The operation of CCD sensors are explained in detail by Tseng et al. (1985) and Gibson

et al. (1996). The transfer of charges out of a CCD occurs in what is called a charge

transfer device.  In this device, a charge is temporarily stored and transferred along a

string of integrated MOSFET’s and capacitors (Cooley and Belina, 1996).  A group of

charges can be serially transferred as well.  A simple schematic of a linear array CCD is

shown in figure 3.9.4.  Incident light is converted to electrical energy by a tiny

photodiode which also stores this energy until it is drained.  Thus, the integration in CCD

sensors occurs within the photodiode material.  The charges accumulated by all the

photodiodes are then transferred in parallel to the charge transfer region by activation of

the transfer gate.  The charge transfer region has individual storage registers which hold

the charge transferred from each photodiode.  After the photodiode charges are

transferred to the charge transfer region, the photodiodes can begin integration again. 

Referring to figure 3.9.4, one clock pulse to the charge transfer region shifts all charges

of each storage register to the right by one register.  The register to the far right is output,

amplified, and represents the signal from the far right pixel.  The next clock pulse shifts

the all storage registers to the right once again and outputs another pixel signal.  This

cycle is repeated until all pixels have been output.  The whole process of transferring the

charges from the photodetector elements to the charge transfer region can then repeat
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itself almost immediately.  More elaborate architectures for the charge flow are

commonly used but these basic concepts are still used.

Figure 3.9.4.  Simplified schematic of a linear CCD, from Tseng et al. (1985).

In general, CCD arrays are preferred over photodiode arrays in low light level

applications.  The data transfer in the CCD architecture is less prone to noise

contamination than in a photodiode array architecture.  However, the CCD array does

tend to cost more and the photodiode array architecture allow more energy per pixel to be

integrated.  Thus, the CCD pixel elements are more likely to become saturated in higher

light level applications (Tseng et al., 1985).

3.10 Photodetector noise sources

There are four or five different sources of noise associated with photodetectors,

depending on the type.  In addition to detector noise, there may other sources of noise in

the system, such as amplifier noise.  

One type of noise, shot noise, is caused by photons arriving at the sensor in a random

order.  The random nature of the photons hitting the detector cause the detector current

output to randomly vary.  Shot noise increases with incident radiant power on the

photodetector.  Also, the frequency spectrum of shot noise is uniform throughout the

usable bandwidth of the photodetector (Horowitz and Hill, 1989).  The second type of

noise is called generation-recombination noise.  When photons liberate electron hole

pairs in the depletion region, some pairs may reunite before they reach the p material or n



42

i kT f
RJ

L
=

4 3101∆ ( . . )

i M eI fsn
n= 2 310 2∆ ( . . )

material.  Also, additional pairs of electrons and holes may be liberated by thermal

energy.  These two processes occur randomly and are jointly called generation-

recombination noise.  A third type of noise, Johnson noise, is caused by fluctuations in a

detector’s internal resistance due to thermal energy creating random motion of electrons

and holes.  These movements create a voltage with a uniform frequency spectrum

(Horowitz and Hill, 1989).  Higher thermal energy causes more random motion of the

electrons so cooling the detector will reduce this source of noise.  Unlike shot noise,

Johnson noise is independent of the incident light intensity.  Johnson noise usually

dominates in low light level applications.  The fourth type of noise is called flicker noise. 

The cause of flicker noise is not well understood but it occurs only in detectors operating

in the photoconductive mode (Anonymous, 1994b).  The last type of detector noise,

readout noise, occurs only in detectors arranged in an array.  When charges are

transferred between different storage registers, there is an uncertainty involved leading to

this type of noise (Anonymous, 1994b).

Of these noise sources, either Johnson noise or shot noise or both will usually dominate

(Palais, 1988).  Average current generated by Johnson noise, ij, can be modeled with the

relation shown in equation 3.10.1

where k is the Boltzmann constant, T is the absolute temperature, )f is the

photodetector’s operating bandwidth, and RL is the internal resistance of the

photodetector.  Average current generated by shot noise, isn, is given by equation 3.10.2

where e is the magnitude of the charge on an electron, I is the average current flowing in

the detector, )f is the photodetector’s operating bandwidth and M is the internal gain in a

photodetector such as an avalanche photodiode or PMT.  The variable n is a correction

factor for avalanche photodiodes because shot noise is more prevalent in these detectors. 

For PMT’s, the shot noise increases linearly with gain, so n equals 2.  But for avalanche
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photodiodes, n falls between 2 and 3.  Both the shot noise and the Johnson noise are

proportional to the square root of the photodetector’s operating bandwidth, )f.  

3.11 Electronic amplifier noise

Almost all photodetectors will require some sort of amplifier to boost the electrical

output of the sensor to a usable level.  In general, noise created in the photodetector will

be multiplied by the gain of the external amplifier.  Also, the amplifier will add

additional noise which is proportional to the gain of the amplifier.  The nature of

amplifier noise is similar to some of the photodetector noise sources, namely Johnson

noise, shot noise, and flicker noise.  Johnson noise in amplifiers is due to the same

phenomena as in photodetectors, random motions of electrons caused by thermal energy

(Horowitz and Hill, 1989).  Shot noise in amplifiers is due the random, discrete, flow of

electric charges within a circuit, similar to the discrete flow of photons arriving at the

photodetector.  As with photodiodes, the cause of flicker noise in amplifiers is not well

understood; however, the magnitude of this noise source is heavily dependent on the

quality of connections within the amplifier circuit (Horowitz and Hill, 1989).  

3.12 Digital noise suppression techniques

Shot noise and Johnson noise are always going to be present to some degree, no matter

how well the light detection system is designed.  Usually some noise suppression is

required for all spectroscopic light measurements.  Two of the most common methods for

suppressing noise, or low pass filtering, in acquired spectra are box car averaging and

Savitzky-Golay smoothing (Hruschka, 1987).  Box car averaging simply replaces a point

by the mean of a set number of points surrounding it.  Savitzky-Golay smoothing

replaces a point by the predicted value of an n degree polynomial fit of points

surrounding the point to be smoothed.  The replaced point is always the center point in

the set of points fit by the polynomial.  Both box car averaging and Savitzky-Golay

smoothing are easy to implement.  Both methods work equally well if the true absorbance

peaks in the spectrum are wide compared to the number of points used in the box car

average or polynomial fit.  However, if the absorbance peak is sharp or narrow, then

Savitzky-Golay smoothing may be more desirable (Hruschka, 1987).
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Both shot noise and Johnson noise are proportional to the square root of the

photodetector’s operating bandwidth, )f.  One way to significantly reduce these two

noise sources is to modulate the incident light at a specific frequency, and band pass filter

the photodetector output at that frequency (Anonymous 1994b).  Letting )fbp be the band

pass width, then the contribution of both shot noise and Johnson noise will be reduced by

a factor of .  This method also can allow simultaneous acquisition of several∆
∆

f
fbp

different signals by one discrete detector, a method used in early analog communication

networks (Palais, 1988).  If several different light signals, modulated at different

frequencies, are incident upon a single detector, then the detector will output the

summation of all the modulated signals.  The detector output signal can then be separated

into individual components, due to each of the modulated light signals, by a set of band

pass filters or by computing a Fourier transform on the acquired signal and selecting the

desired frequency component.  A schematic of such an analog modulation system is

shown in figure 3.12.1.

Figure 3.12.1.  Schematic of a system to detect three beams of light with three different
modulation frequencies. 

3.13 Light emitting diodes

Light emitting diodes (LED) offer several advantages over incandescent light sources

such as: ability to operate at high modulation frequencies, long lifetime, ability to

withstand shock and vibration, and low power consumption (Hodapp, 1996).  The
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operation of a LED is similar to that of semiconductor photodetectors in reverse.  A LED

is constructed of a pn junction that emits light when forward biased (Palais, 1988).  The

forward bias voltage provide the free electrons, contained in the n region, enough energy

to cross into the p region and unite with a hole.  This results in an energy loss which is

converted to optical energy (Palais, 1988).  Most commercial LED devices are

constructed of a few elements such as Aluminum (Al), Galium (Ga), Indium (In),

Nitrogen (N), Phosphorous (P), Arsenic (As), and Antimony (Sb) (Hodapp, 1996). 

Emission wavelengths of devices constructed of GaInP are in the range of 640 to 680 nm,

AlGaAs devices emit light from 800 to 900 nm, and GaAs devices emit light between

900 and 1000 nm (Palais, 1988).  The actual light emission range and peak wavelength

depends further on the internal crystal structure of the semiconductor material

(Anonymous, 1996).  

In an ideal case, the radiant power output of a LED is linearly proportional to the

electrical current passing through the LED. Impurities and imperfections in the LED

semiconductor material can cause the relation between LED current and radiant output

power to be slightly nonlinear.  However, most of the nonlinearities occur at operating

currents at the very low end or very high end of the LED’s operating range (Hodapp,

1996).

The radiant output power of LEDs and in the peak emission wavelength are effected by

their operating temperature and length of service.  The internal resistance of the LED

changes with temperature and this effects the current flow through the device, resulting

changes in radiant output power.  Also, radiant output power for a given current will

deteriorate with time.  This is due to dislocations and shifts in the crystal structure of the

semiconductor material (Hodapp, 1996).  The radiant output power, P, decreases

exponentially with operating time as shown in equation 3.13.1
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where Po is the initial radiant output power, $ is a constant called the deterioration factor,

and t is the total operating time.  Thus, the radiant output power of an LED may drop

rapidly during an initial “burn in” period.  Afterwards, the radiant output power will

decrease gradually for the duration of the life of the LED.

3.14 Color theory

Young (1802) stated that any color can be reproduced by mixing an appropriate set of

three primary colors.  Much later, it was shown that the normal human eye has three

different color sensors, called cones, with different absorption spectra, S1(8), S2(8), S3(8)

(MacAdam, 1970).  The spectral sensitivity of all normal cones lie between 380 nm and

780 nm but the peak responses for each cone falls in the yellow-green region of the

spectrum for S1(8), in the green region for S2(8), and in the blue region for S3(8).  Color

sensation due to the response from visible light with a spectral energy distribution

described by C(8) can be described by three separate responses, "1(C), "2(C) and "3(C)

computed by equation 3.14.1

The mathematics of color matching is described by Jain (1989).  Defining three

independent primary sources of light, Pk(8) , k = 1, 2, 3, where 

and three proportions $k, where  k = 1, 2, 3.  Then the perception of light with spectral

energy, C(8), could be matched by the proper mixture of $kPk(8) , k = 1, 2, 3.  The three

cone responses "1(C), "2(C) and "3(C) can be described equation 3.14.3 in terms of $k

and Pk(8)

Values of for  $1, $2 and $3 can be found by solving the three equations for "1(C), "2(C)

and "3(C) to describe the cone response to light with a spectral energy distribution, C(8),

using three known primary sources, P1(8), P2(8), and P3(8).  The primary colors are
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usually normalized with a white light source with a known spectral energy distribution. 

White light is produced by adding the three primary sources.  Letting wk represent the

quantity of the kth primary source required to match the reference white source, then the

quantities , k = 1, 2, 3 are called the tristimulus values of color C (Jain,( )T Ck w
k

k
= β

1989). Chromaticities of a color are defined in equation 3.14.4

There are several systems for describing color.  People normally describe color in terms

of brightness, hue, and saturation.  The sensation of brightness describes the light

intensity, or gray level (black, gray, or white).  Hue describes the dominant wavelength

which defines the color as red, blue, green, etc (Benson, 1986).  Saturation describes the

amount of white which gives sensation of the color’s strength or purity (pale, pastel,

vivid, strong).  A common color system is called the C.I.E. XYZ system formed by the

Commission Internationale de L’Eclairage (International Committee on Color Standards). 

The C.I.E. XYZ system is based on an imaginary set of primary sources so that all colors

can be reproduced with it.  A plot of the x and y chromaticities, called chromaticity

diagram is shown in figure 3.14.1.

Only physically realizable colors would fall in the shaded area of the chromaticity

diagram shown in figure 3.14.1.  Distances between two points within the C.I.E. XYZ

chromaticity diagram do not well quantify perceived difference in color.  The ellipses

shown in the chromaticity diagram are called MacAdam ellipses (Jain, 1989).  Colors

within each of these ellipses are not distinguishable to the average viewer.  The C.I.E.

XYZ color system can be transformed to other color systems, such as the modified

Uniform Chromaticity Scale (UCS) system or C.I.E. L* a* b* system, where distance

between two points in the chromaticity diagram quantitatively corresponds to perceived

difference in color (Jain, 1989).
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Figure 3.14.1.  Chromaticity diagram for the C.I.E. XYZ color system, from (Jain, 1989).

In the C.I.E. L* a* b* system, L* indicates lightness, a* indicates level of red or green,

and b* indicates the level of yellow or blue.  An a* b* chromaticity diagram is shown in

figure 3.14.2.  As can be seen from this figure, a high positive a* value indicates red

colors, a highly negative a* value indicates green colors, a high positive b* value

indicates yellow colors and a highly negative b* value indicates blue.  The C.I.E. L* a*

b* values can be computed from the C.I.E. XYZ system with equations 3.14.1 through

3.14.3



49

L Y
Y

a X
X

Y
Y

b Y
Y

Z
Z

n

n n

n n

* ( . . )

* ( . . )

* ( . . )

=

=






 −





















=






 −





















116 3141

500 314 2

200 314 3

1
3

1
3

1
3

1
3

where Xn, Yn, and Zn are the tristimulus values for the reference white (Jain, 1989).

Figure 3.14.2.  Chromaticity diagram for the C.I.E. L* a* b* system.
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4. MATERIALS AND METHODS

4.1. Field Experiments

Effect of added moisture on incidence of concealed damage of windrowed nuts and nuts

scattered on the orchard floor was studied in two different orchards at harvest time. 

Nonpareil almonds were sampled from the first orchard on August 13, 1996 in the

Wolfskill Agricultural Experiment Station in Winters, California.  Mission almonds were

sampled from the second orchard on September 20, 1996 in the Dewy Farms orchard

near Woodland, California.  Upon harvest (tree shaking), samples weighing 

approximately 300 g were collected from the orchard floor for moisture measurement. 

Moisture was measured in a vacuum oven (National Appliance, Portland, OR, model

5851) by the drying method with 30 psi vacuum, 50°C temperature, and 24 hours.  These

parameters were determined by trial and error.

Three groups of approximately 2 kg in-shell nuts with hulls (in each group) were

collected from the orchard floor after tree shaking and condensed into an area

approximately one square meter for moisture and temperature monitoring.  Some nuts

were touching each other but there was only one single layer.  Likewise, another three

groups, each comprising 2 kg nuts, were raked along with leaves and other orchard floor

material into windrows approximately 1 m long and 20 cm high.  A windrow height of 20

cm was typical of adjacent orchards for this harvest year.  One pair of windrow and

scattered nuts was treated to sprinkle irrigation for 45 minutes which amounted to 1 cm

water coverage.  Another pair of windrow and scattered nuts was sprinkle irrigated for

135 minutes which amounted to 3 cm water coverage. The third pair of scattered and

windrow nuts was left as a control set and not treated with any irrigation.  A four channel

temperature recorder (Hanna Instruments, Italy, model HI 9274C) was used to monitor

the temperature of one nut in each windrow treatment as well as the ambient temperature. 

The nut was then positioned at the center of the windrow, about 10 cm from the ground. 

The probe from the temperature recorder was inserted through the hull, shell, and into the

kernel.  The temperature of each channel was recorded every thirty minutes for the first

three days of the experiment.  Approximately 300 g of nuts were sampled from each
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treatment each day for five days for moisture content measurement.  After drying to

determine moisture content on the fifth day, Mission almonds were split at the suture and

visually inspected for presence of concealed damage.  Since the nuts were dried in the

vacuum oven at 50°C for 24 hours, internal browning was already present.  So, no further

cooking was required to induce concealed damage.

4.2. Chemical tests

a. Overview

Chemical properties of almonds was studied before they were exposed to moisture, after

exposure to moisture, after drying, and after cooking.  Whole Mission almonds kernels

from the 1996 harvest were used for this entire experiment.  Almonds were exposed to

three different moisture treatments (none, short, long), two different drying treatments

(low temperature and high temperature) and all cooked together at the same temperature

and for the same time.  Details of the moisture, drying and cooking treatments will follow

later in this discussion. Before exposure to moisture, after moisture exposure, after

drying, and after cooking, batches of nuts were removed for chemical analysis.  Sets of

ten batches, with each batch comprising 30 almonds, were analyzed for glucose, sucrose,

color, moisture, oil refractive index and soluble solids.  Basic amino acids were measured

before moisture treatment and after cooking.

The short moisture treatment involved soaking the nuts in water for 30 minutes then

transferring them to a 95% relative humidity environment at 22°C for 12 hours.  The long

moisture treatment involved soaking the nuts in water for 10 minutes then transferring

them to a 95% relative humidity environment at 22°C for 72 hours.  These two treatments

were found to raise the kernel moisture content to approximately 15% d.b. for the short

treatment and 22% for the long treatment.  These moisture contents were similar to the 1

cm and 3 cm irrigation treatments used in the field experiments.

After moisture treatment, nuts were dried to their original mass at one of two different

drying temperatures, 55°C or 110°C, in an air convection dehydrator (Proctor, Horsham,
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PA, #062).  The nuts were then cooked in a gravity convection oven at 135°C for 90

minutes.  

A total of 12 sets of ten batches were analyzed since there were two different moisture

treatments (as well as the controls) and two different drying treatments.  The sample sets

comprising ten batches of nuts were removed for analysis after each treatment.  Table

4.2.1 displays all of the treatment combinations used and what measurements were taken

for a given treatment combination.  Figure 4.2.1 displays a flow chart of the experimental

procedure.

Table 4.2.1.  Chemical analysis performed for a given moisture, drying and cooking
treatment.  An “X” means that the analysis was performed for the treatment combination.

Treatments Analysis
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none none no X X X X X X X X
short none no X X X X X X
long none no X X X X X X
short 55 no X X X X X X
short 110 no X X X X X X
long 55 no X X X X X X
long 110 no X X X X X X
none none yes X X X X X X X X
short 55 yes X X X X X X X X
short 110 yes X X X X X X X X
long 55 yes X X X X X X X X
long 110 yes X X X X X X X X
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Figure 4.2.1.  Flow chart of experimental procedure.  The “A” enclosed in a circle
indicate nuts were removed for analysis.  Refer to table 4.2.1 for the specific analysis
performed at each stage.
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b. Moisture measurement

Prior to subjecting the nuts to any treatment, all of the nuts were stored in a sealed plastic

container for three weeks in order for their moisture to equilibrate.  After three weeks, the

moisture content of ten batches of thirty nuts was measured by drying in a vacuum oven

(National Appliance, Portland, OR, model 5851) with 30 psi vacuum, 50°C temperature,

for 24 hours (AOAC, 1980).  Moisture of the treated nuts was computed using the change

of mass of the batch and assuming all batches started with the same initial moisture as the

vacuum oven dried samples.

c. Sugar assay

The sugar analysis was performed by an adaptation of a glucose oxidase method

described by Anonymous (1995b).  Each almond batch was ground in a blender with

nearly equal proportions of dry ice and nuts to prevent caking.  After two minutes of

grinding, the resulting powder was passed through a #30 mesh screen.  The larger

particles not passing through the screen were ground again for two minutes and sifted

again.  This procedure was repeated until all the almond grindings were able to pass

freely through the screen.  The sugars were extracted by placing 200 mg of almond

powder in a test tube with 4 ml of water for one hour at room temperature.  The sample

was found, by trial and error, to reach an asymptotic sugar concentration in one hour.  It

is desirable to keep the extraction time and temperature at a minimum to prevent sucrose

inversion during extraction.  During extraction, the test tube contents were mixed with a

vortex mixer every 15 minutes for 30 seconds.  After the extraction period, the test tube

was centrifuged for 5 minutes at 4500 RPM.  Next, 2 ml of supernatant was removed and

placed into a clean test tube and centrifuged again for 5 minutes at 4500 RPM.

For glucose determination, 1 ml of supernatant was mixed with 5 ml of combined

enzyme - color reagent solution (1.6 ml o-dianisidine dihydrochloride reagent, Sigma, St.

Louis, MO, #510-50) mixed with 100 ml glucose oxidase solution (Sigma, St. Louis,

MO, #510-6).  A standard glucose assay was prepared by adding 0.075 ml glucose

standard solution (Sigma, St. Louis, MO, #635-100) to 0.925 ml water and 5 ml of the

enzyme color reagent solution.  All samples, including the standard, were incubated at
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37° C for 20 minutes.  Thereafter, 2 ml of each sample was transferred to a cuvet and

light absorbance was measured at 440 nm with a spectrometer (Ocean Optics, #PC1000,

Dunedin, FL).  The glucose concentration of the almond powder was then computed

using equation 4.2.1. 

Glucose (mg/galmond) = (Asample)(1.5)/Astandard)       (4.2.1)

For the sucrose assay, 0.075 ml sugar extract supernatant was added to 0.425 ml

invertase solution containing 40 mg class IV invertase (Sigma, St. Louis, MO, #I-4504)

dissolved in 50 ml water.  The standard comprised 0.075 ml glucose standard solution

with 0.425 ml invertase solution.  The dilution of the invertase solution was found, by

trial and error, to completely invert dilutions of pure sucrose of comparable concentration

to the almond sugar extract.  Each sample, and the standard was added to 5 ml of

combined enzyme - color reagent solution.  All samples were incubated at 37°C for 20

minutes and absorbance was measured at 440 nm.  This reading determines the total

invert glucose plus resident glucose before analysis.  Sucrose concentration of the

almond powder was computed using equation 4.2.2.  All glucose and sucrose assays for

each sample were performed in duplicate and the average of the two measurements were

used.  Duplication of the assays was used to check if an error was made during the

experiment.  When the experiment was properly performed, the two assays would not

deviate more than 1% from each other.

Sucrose (mg/galmond) = (Asample)(40)/Astandard) - 2*Glucose (mg/galmond)    (4.2.2)

d. Water soluble solids measurement

The water soluble solids of the sugar extract solution used for the glucose and sucrose

assays were measured with an Abbe refractometer (American Optical Corporation,

Buffalo, NY, #10450).  Three separate refractometer measurements were taken for each

sample and the average was used.
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e. Oil refractive index measurement

Oil from the almond powder was extracted by placing approximately 5 g of almond

powder in a Buchner type funnel (Coors, Golden, CO, #60240) fitted with filter paper

(Watham, Maidston, England, #50, ).  Approximately 10 ml hexane was slowly poured

over the powder and pulled through the filter paper by a vacuum on the opposite end of

the funnel.  The filtered fluid was transferred to a clean test tube and placed in a water

bath at 50°C.  A flow of gaseous nitrogen was directed into each test tube to shield the

extracted oil in order to prevent oxidation.  Under these conditions, the hexane

completely evaporated in less than ninety minutes.  Duplicate readings of refractive index

of the extracted oil were obtained with an Abbe refractometer  (American Optical

Corporation, Buffalo, NY, #10450).  As with the sugar assay, the duplicate readings were

used as a check.  When the experiment was performed properly, the refractive index

readings from the same sample would fall within 0.2% of each other.

f. Amino acid assay

The amino acid assay, adapted from Hurrell et al. (1979), was performed to quantify

amino acid degradation that might occur during the browning reaction associated with

concealed damage.  This assay can be used to determine all three basic amino acids,

histidine, arginine, and lysine and with an additional step, lysine alone can be measured. 

Only the procedure to measure all three basic amino acids was used as almonds contain

small amounts of lysine and preliminary tests did not show a correlation between lysine

concentration and concealed damage.  The dye solution used for the assay contained:

3.89 mmol dye/l, 1.36 g acid orange 12, 20 g oxalic acid dihydrate, 3.4 g potassium

dihydrogen phosphate, 60 ml glacial acetic acid and water to bring the volume to one

liter.  The basic amino acid assay procedure was as follows: 100 mg of almond powder

(estimated to contain 3.25 mg basic amino groups @ 32.5 mg/g) was mixed with 1 ml

sodium acetate solution (16.4%w/v), and vibrated for 20 minutes.  Afterwards, 4 ml dye

solution was added and the mixture vibrated for 2 hours.  The mixture was then

centrifuged for 10 minutes at 4000 rpm and the supernatant diluted 50 fold with buffer

solution.  The buffer solution contained 0.1M sodium bicarbonate with the pH adjusted to
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8.5, as measured by litmus paper (Fisher Scientific, Pittsburgh PA, #A979), with sodium

hydroxide.  A dye solution (with no sample) was diluted 50 fold as well as a standard. 

The diluted mixture was transferred to a cuvet and the absorbance was measured at 480

nm with a spectrometer (Ocean Optics, Dunedin, FL, #PC1000).  The standard dye

solution has a dye concentration of 3.89 mmol/l.  The concentration of dye in the sample

solutions is less as the dye binds to the amino groups of the basic amino acid side chains

on a one to one basis.  Thus, the concentration of basic amino acids is approximated by

the difference in absorbance readings between the sample and standard as shown in

equation 4.2.3

Basic amino acid concentration (mmol/l) = 3.89(Astd-Asample)/Astd    (4.2.3).

g. Color and concealed damage measurements

The color of the almond powder was measured with a colorimeter (Minolta, Japan, #CR-

200).  The almond powder was held in a clear plastic, 20 mm diameter, cylindrical vial

with a flat bottom and the powder was compressed with a 0.5 kg cylindrical lead weight

from the top.  The diameter of the weight was slightly less than the inside diameter of the

vial.  The vial was then set on top of the colorimeter for measurement.  Three

measurements for each sample were taken and averaged.  The colorimeter was re-

calibrated with a white standard between each sample.

After cooking each batch of nuts, the incidence of concealed damage was measured by

splitting each nut in the batch at the suture and visually classifying the nut into one of

two classes, concealed damaged or good.  A nut was considered concealed damaged if

more than 50% of the kernel cross-sectional area appeared dark brown as shown in figure

1.1.  This is the approximate criteria used by the almond industry (Stoddard, 1995).

h. Post-dry water soluble solids and post-cook color

Based on soluble solid content results from the batch tests, soluble solids in dried nuts

before cooking might be used to predict severity of concealed damage after cooking. 

This was investigated further with 24 individual nuts.  Nuts were exposed to moisture by
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soaking them in water for 30 minutes and then holding them in a 95% relative humidity

environment at 22° C for 36 hours.  Afterwards, the nuts were dried at 110°C to their

original bulk mass.  After drying, individual nuts were split in half at the suture.  Water

soluble solids were extracted and measured from one half  per the procedure used in the

sugar assays in section 4.2b.  The other half of the nut was cooked at 135° C for 40

minutes.  The color of the cooked half was measured with a colorimeter (Minolta, Japan,

#CR-200) on a 6.35 mm diameter spot at approximately the widest part of the nut.

4.3 Physical and spectral property measurement

a. Overview

Physical properties and light transmission spectra were measured on individual nuts

which were treated with one of three different moisture treatments (none, short or long)

and one of two different drying treatments.  These moisture treatments were slightly

different than those used in the chemical tests.  The reason for the change in moisture

treatments was to induce a higher incidence of nuts with concealed damage.  The long

moisture treatment comprised soaking the nuts in water for 60 minutes, then transferring

them to a 95% relative humidity environment for 60 hours.  This treatment raised to

moisture content of the almond kernels to approximately 44% d.b.  The short moisture

treatment comprised soaking the nuts in water for 30 minutes then transferring them to a

95% relative humidity environment for 30 hours.  This treatment raised to moisture

content of the almond kernels to approximately 23% d.b.  Drying was performed in an air

convection dehydrator (Proctor, Horsham, PA, #062). The following eight moisture,

drying, and storage  treatment combinations were used: 

(1) long moisture and 110°C convection dry, 

(2) long moisture and 55°C convection dry, 

(3) short moisture and 110°C convection dry, 

(4) short moisture and 55°C convection dry, 

(5) no moisture treatment and no drying, 

(6) no moisture treatment and 55°C convection dry, 

(7) no moisture treatment and 110°C convection dry, 
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(8) long moisture treatment and 110°C convection dry, then stored for one year   

    at 90% relative humidity at 4°C.  

The nuts that were dried but received no moisture treatment were dried for the same

length of time as the short moisture treatment nuts.  Eighty one Mission variety almonds,

1996 harvest, were exposed to each moisture and drying treatment combination.  Before

any treatment was performed, nuts to be used in this experiment were stored together in a

sealed container for three weeks to equilibrate the moisture.  A sample comprising 30 g

of nuts (approximately 33 nuts) was removed and their moisture measured by the vacuum

drying method (National Appliance, Portland, OR, model 5851) with 30 psi vacuum,

50°C temperature, for 24 hours.  The cooking treatment was 135°C for 90 minutes in a

convection oven (Lab-Line Instruments, Inc., Melrose Park, IL, Imperial IV). The pre-

cook physical properties measured of each sample were: pre-moisture treatment mass,

post-dry mass, post-dry thickness, post-dry volume by x-ray imaging, transmission

spectra from 700 to 1000 nm before treatment, post-dry transmission spectra from 700 to

1400 nm.  In addition, the moisture treated nuts were visually inspected for mold on the

kernel surface after moisture exposure, a wet appearance after moisture exposure, and if

the nut was from a double kernel.  The post-cook physical properties measured were

mass and color of the kernel interior with a colorimeter (Minolta, Japan, #CR-200).  In

addition to these measurements, the effect of a seven month storage on severity of

concealed damage was studied (section 4.3e).

b. Thickness and volume measurement

Nut thickness was measured, to the nearest 0.25 mm, at its widest point perpendicular to

the suture plane with handheld calipers (General National, Berne, Switzerland).  Nut

volume was measured by obtaining a film x-ray image of nuts lying flat, with their suture

plane parallel to the image plane.  The film x-ray was created with an x-ray source

(Faxitron X-ray, Buffalo Grove, IL, #4380N) at a voltage of 30 KeV, current of 30 ma

and exposure time of 100 s.  The x-ray film (Eastman Kodak, Rochester, NY, Industrex B

film) was developed with an automated developing system (Eastman Kodak, Rochester,

NY, X-Omat M35).  The x-ray operating parameters were established by trial and error to
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give optimum contrast determined by manual inspection.  A square piece of wood was

placed in each image as a standard volume.  Wood was used as it’s molecular content and

atomic absorptions are similar to almonds.  All images were taken within one hour to

avoid moisture changes in the wood standard.  The film x-ray images were digitized at 8

bit resolution, 58 pixels per centimeter with an automated film scanner (Lumisys Inc.,

Sunnyvale, CA, #0068-255).  The digital images were thresholded to set the background

intensity to zero then logarithmically transformed.  The log transform makes the intensity

of each pixel proportional to the thickness of the nut at that pixel location, not counting

internal voids. The intensities of all pixels comprising only the nut were integrated as

well as the wood standard.  This integration is proportional to the volume of the nut.  To

test the correlation of pixel integration and nut volume, x-ray images of 49 control nuts

and 49 moisture treated and dried nuts (long moisture exposure, 110° C dry) were

obtained.  Afterwards, the volume of the nut was measured by buoyancy in toluene. 

c. Light transmission spectra measurement

The light transmission spectra of shelled whole natural Mission almonds were obtained

with two different fiber optic spectrometers.  A silicon photodiode array sensor based

spectrometer (Ocean Optics, Dunedin, FL, #PC1000) was used to obtain the spectrum

from 700 to 1000 nm, and an InGaAS photodiode array spectrometer (Control

Development, South Bend, IN, #OSC/256L-1.7T1-250A/0.9-1.7/3.2) was used to

measure the spectrum from 950 nm to 1400 nm.  The spectral resolution, or interval

between absorbance points, of the silicon spectrometer and InGaAs spectrometer were

0.48 nm and 3.2 nm respectively.  The optical resolution for both spectrometers had a full

width half maximum of approximately 3 nm.  This means that if a purely monochromatic

light source was measured with the spectrometer, then the measured spectrum would not

appear as a single point but would appear as a gaussian distribution with a width of width

of 3 nm at its half maximum. The apparatus used for obtaining the  transmission spectra

is displayed in figure 4.3.1.  Each spectrometer sampled ten complete transmission

spectra and stored the average.  The integration time of each photodiode element on the

silicon spectrometer and InGaAs spectrometer was 0.5 s and 1.0 s respectively.  The

integration times and number of samples to average were obtained by trial and error. 
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Approximately 15 seconds were required to acquire spectra for one nut with these

parameters.  The time that the nut was exposed to the light source had to be minimized. 

If the nut was exposed to the light source for more than one minute, heating and

scorching would sometimes begin due to the intense light from the light source.  The

light source was a 100 W quartz tungsten halogen lamp (Oriel, Stratford, CT, #77501). 

The light transmission spectra of each nut was measured at approximately the thickest

point perpendicular to the suture plane.  Transmitted light through the nut was split and

directed to each of the two spectrometers through fiber optic cables.  This facilitated

acquisition of spectra by both spectrometers at the same time.  A light standard and dark

standard were obtained between sampling each nut.  The dark standard was obtained by

blocking the light source with a steel shutter.  The light standard was obtained by placing

a glass neutral density filter with a transmission of 0.1% (Ealing, Holliston, MA, #35-

5941) in place of the sample. 

Figure 4.3.1.  Schematic of light transmission spectra hardware.
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Both of the spectrometers stored each spectrum from a single nut in a separate data file. 

All the spectral data files from each spectrometer were consolidated into one large

comma delimitated ASCII file using the programs listed in appendices A and B. 

Afterwards, the spectra was filtered using a 19 point Savitzky - Golay 2nd order smooth

performed by the program listed in appendix D.  Using the program listed in appendix C,

the combined spectra were converted from comma delimitated format to a standard

JCAMP-DX format, as described by McDonald and Wilks, Jr. (1988), for importing into

spectral analysis software.

d. Scoring concealed damage severity

After cooking, nuts were split at the suture and their color measured on a 6.35 mm

diameter circle of the nut interior at approximately the same location as where the

transmission spectrum was obtained.  A colorimeter (Minolta, Japan, #CR-200) was used

to measure the color in C.I.E. L* a* b* color space.

The cooked nuts were evaluated for severity of concealed damage using a five level

visual scoring system, table 4.3.1.  Nuts from each representative group were used as

references.  Two people performed the scoring together as a team and a score was

assigned only after the two people agreed on the assigned score.
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Table 4.3.1.  Visual concealed damage scoring criteria.

Score Description Example

1 no perceivable browning

2 minor light browning, covering less than 50% of kernel cross-
sectional area

3

minor, light browning, covering more than 50% of the kernel
cross-sectional area, OR 
minor browning covering less than 50% of kernel area if a darker
brown spot exists 

4 darker browning covering at least 50% of the kernel area

5 darker browning covering at least 50% of kernel area  and at
least 10% of kernel area appears very dark or burnt.

Photographic slides (Eastman Kodak Co., Rochester, N.Y., ASA 200, Ektachrome) were

obtained of all split open almond kernels after cooking.  All 81 kernels from one

treatment group were arranged side by side in a small square array and photographed all

at once.  Thus, one slide captured the images of all nuts belonging to one treatment

group.  Two paint chips, rawhide brown and almond color (Behr Process Corp., Santa

Ana, CA), were included in each image as standard colors.  The rawhide paint chip

approximated the darkest brown that may appear in concealed damaged almonds while

the almond color paint chip approximates the lightest color of non-damaged almond

kernels.  The slides were digitized with a 35 mm film scanner (Nikon, Shinagawa-ku,

Japan, LS-1000).  The resolution of the digital images was 1296 pixels x 1944 pixels

which corresponded to approximately 150 pixels per inch in real space. The color

intensity resolution was 24 bit (8 bits per color channel).  
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The digital images were further processed with a shareware software package (Image PC,

Scion Corp, Frederick, MD).  First, they were converted to grayscale, then linearly

histogram stretched so that the minimum and maximum corresponded to the mean

intensity of the rawhide and almond paint chips, respectively.  This assured that the

intensity scale for all images were consistent.  The gray level of the rawhide paint chip

ranged from 30 to 43 and the gray level of the almond paint chip ranged from 226 to 234. 

Most almond images had a dark edge around the perimeter of the nut caused by the

brown skin and shadows adjacent to the nut.  These areas were manually set to zero

intensity with an eraser tool.  About 10% of the almonds had cracks in the middle of the

kernel, giving a darker appearance than the surrounding kernel tissue.  The cracked areas

were manually set to zero intensity as well, with an eraser tool.  The background was set

to zero and the mean pixel intensity of non-zero pixels was computed.  The percentage of

pixels with an intensity greater than zero and less than 120 was also computed.  The gray

level threshold of 120 was found, by trial and error, to contain the darker brown regions

used to characterize nuts with visual scores of four or five as discussed in table 4.3.1. 

Each stage of the image processing procedure is shown in figure 4.3.2. 

Figure 4.3.2  Image processing of cooked almond halves.  The upper almond is concealed
damaged, the lower is normal.

e. Storage effects

The effect of dry storage on the incidence and severity of concealed damage was studied

by storing nuts in a controlled atmosphere maintained at 10°C and 45%±5% relative
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humidity after exposure to the following five moisture and drying treatment

combinations:

(1) long moisture and 110°C convection dry, 

(2) long moisture and 55°C convection dry, 

(3) short moisture and 110°C convection dry, 

(4) short moisture and 55°C convection dry, 

(5) no moisture treatment and no drying (control).

The long and short moisture treatments, as well as the drying treatments, were the same

as discussed in section 4.3a.  Batches of 81 Mission almonds were used for each moisture

and drying treatment combination.  These nuts were from the same group used for the

spectral property measurement as discussed in section 4.3a.  Nuts were stored for seven

months after the moisture and drying treatments.  After seven months of storage in the

controlled atmosphere, nuts were removed and cooked with the same cooking treatment

as discussed in section 4.3a: 135°C for 90 minutes in a convection oven (Lab-Line

Instruments, Inc., Melrose Park, IL, Imperial IV).  After cooking, nuts were split open at

the suture, photographed, and image scored for concealed damage severity as discussed

in section 4.3d.

f. Prediction of concealed damage from post-dry spectra, overview

A primary objective of this study was to determine what, if any, spectral transmission

features of the pre-cooked almonds could be used to predict if a nut will become

concealed damaged after cooking.  Features of the pre-cook transmission spectra were

selected based on their ability to correctly classify nuts as concealed damaged or normal. 

The mean gray level obtained from the kernel images after cooking has a high

correspondence to the visual concealed damage scores as can be seen by figure 5.3.1. 

For the data calibration and classification of nuts into two categories, concealed damaged

or normal, the mean gray level was used rather than the concealed damage scores.  Nuts

with a mean gray level above 160 were classified as normal and nuts with a mean gray

level below 160 were classified as concealed damaged.  The mean gray level of 160 was

chosen as the division between concealed damage and normal nuts because this level will

included all nuts with visual scores of 4 and 5 as concealed damaged.  It also includes the
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brownest of the nuts with a visual score of three as concealed damaged.  Some browning

of almond kernels, typical of all almonds with visual scores of two and most with visual

scores of three, are not considered a problem as these nuts do not develop bitter flavors

and the degree of discoloration does not result in a negative reaction by the consumer

(Stoddard, M.  1995).  Bitter flavors are found in nuts with visual scores of four and five,

and perhaps some of the darkest nuts with a concealed damage score of three (Stoddard,  

1995). 

Due to wide variations in skin quality, nut thickness, and nut shape, absorbance values

were normalized by dividing each absorbance value with the mean of all values in the

sampled spectrum.  This data treatment helped to cancel out the effect of nut thickness,

skin chips, and skin condition.

g. Prediction based on stepwise discriminant analysis

Features to classify samples into groups with discriminant analysis can be selected in a

stepwise manner similar to stepwise selection for regression variables.  However, when

high multicollinearity exists between the features, the stepwise procedure may not select

the best group of features to perform the classification.  Principle component analysis

was performed on the spectra to overcome this problem while developing classification

models using large portions of the spectrum.  Principle component analysis was

performed on the entire normalized  absorbance, first derivative, and second derivative

spectra from 700 to 1300 nm, from 700 to 975 nm, and from 1000 to 1300 nm.  The

spectra used was 19 point Savitzky - Golay 2nd order smoothed and with data spaced in 5

nm increments.  Absorbance values from the Ocean Optics spectrometer, between 700

and 975nm were not equally spaced.  Equally spaced data in 5 nm increments was

computed by 19 point interpolation.  Absorbance values were normalized by dividing

each absorbance value with the mean of all values in the sampled spectrum to cancel out

the effect of nut thickness, skin chips, and skin condition.  First derivatives were

computed using the forward difference method with a 10 nm gap.  Second derivatives

were computed using the central difference with a 10 nm gap.  Statistical analysis was

performed with the SAS statistical package  (SAS Institute Inc., Cary, NC) to perform a
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two way classification based on the mean gray level of the almond kernel.  Stepwise

discriminant variable selection (sle = 0.05, sls = 0.05) of the principle components was

then used to choose a relatively small set of variables to be used in the discriminant

function.  Discriminant analysis in SAS was trained with the selected principle

components on half of the data (odd numbered samples) and validated with the other half

(even numbered samples).    Equal a priori probabilities were used for normal and

concealed damaged groups.  The pool = test option was used to determine equivalence of

covariance matrices.  The model selected by the stepwise selection procedure was

checked for over fitting on the validation set.  For each model, a plot was constructed of

the number of variables in the model, in the order selected, versus the error rate.  One of

these plots, for the model using absorbance, first derivative and second derivative data

between 1000 and 1300 nm is shown in figure 5.3.3.  It can be seen from this plot that

removing the last variable selected will slightly improve the classification error rate in

the validation set.  For many of the models, the error rate of the validation set could be

improved by removing one or two of the last variables selected during the stepwise

selection procedure on the calibration set. The error rate is the percent number of

incorrectly classified nuts in the validation set.

Figure 4.3.3.  Example plot of percent error in validation for a discriminant model with a
range of variables.
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h. Prediction with discriminant analysis using all combinations of three features

The PCR and PLS methods may not select the best combinations of variables even

though they take measures to eliminate multicollinearity.  Discriminant or prediction

models based from these whole spectrum methods may still be effected by interfering

variables.  Also, the design of a real-time sorting device to inspect almonds at a high

speed would be simplified if only a few discrete wavelengths were needed rather than a

whole spectrum.  Selection of a small number of spectrum variables is difficult because

of the high multicollinearity existing in spectra data.  Another approach of selecting

variables, or features, for a discriminant model is to evaluate all possible combinations of

variables.  A program, listed in appendix F, was written to perform discriminant analysis

using three features to classify nuts into one of two groups.  Feature selection was based

on the error rate of all possible combination of three features.  Nuts were considered

concealed damaged if their mean gray level was below 160.  One half (odd numbered

samples) of the 648 nut data set were used for calibration, and the other half (even

numbered samples) used for validation.  Equal a priori probabilities were used for normal

and concealed damaged groups.  The covariance matrices for the two groups were pooled

as tests performed with SAS (proc discrim pool = test) indicated that the variance of the

two groups were equivalent.  This analysis was performed on the portion of the spectrum

from 700 nm to 975 nm with normalized absorbance values available in 5 nm increments. 

All combinations of features within this range were used.  Normally this required about

50 hours of processing time (using a Sun Sparc station 10 computer) which necessitated

the limitation to test a maximum of only three features.  The analysis was performed on

five different data sets: (1) normalized absorbances, (2) all first derivatives with a central

difference gap less than 25 nm, (3) all second derivatives with a central difference gap

less than 50 nm, (4) all possible combinations of ratios of two normalized absorbance

values, (5) all possible combinations of continuous areas in the normalized absorbance

spectra less than 100 nm wide.  The set of three features from each data set that obtained

the lowest classification error rate on the validation set was recorded.  The derivatives

were computed by the finite difference method with absorbance values separated by a

certain wavelength gap.  Equation 4.3.1 shows the computation of, Ax’, the first
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derivative at wavelength x, using the normalized absorbance values and equation 4.3.2

shows the computation of the second derivative, AxO, at wavelength x with a given gap

First and second derivatives were computed with gaps ranging from 5 to 50 nm, in 5 nm

increments.

i. Prediction with partial least squares regression

Partial least squares (PLS) regression was performed with the mean gray level as the

dependent variable and normalized absorbance spectra as independent variables.  The

PLS software used, NSAS (NIRSystems, Shingle Springs, MD), required that the data set

contain less than 500 samples.  Thus, only the first 62 samples from each treatment were

used, resulting in a data set of 496 total samples.   Half of the samples in the data set were

randomly selected and used for calibration, the other half were later used for validation. 

The calibration procedure used four internal cross validation subsets to check for over

fitting.  The classification performance of the PLS regression equations to classify nuts as

concealed damaged or normal was tested on the validation set.  Nuts were classified as

concealed damaged if the predicted mean gray level was less than 160.  The PLS

predicted class was compared with the actual class.  

j. Prediction using simulated LED absorbances

For detecting concealed damaged nuts at a rapid rate and low cost, it is most desirable to

use a small number of spectral features.  Preferably, the spectral features would be

obtained from wide segments of the spectrum to improve signal strength.  Whole

spectrum methods using principle components or partial least squares require the capture

of a complete spectrum, or large portions of a spectrum.  However, hardware to obtain

and process a whole spectrum rapidly would be more expensive than a system using a

small number of light bands based on LEDs.  Low cost LEDs for use in a high speed
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sorter were selected by examining the specific wavelengths in the three variable

discriminant models (table 5.3.7).

The feasibility of using light emitted by LEDs to rapidly detect nuts with concealed

damage was studied using the acquired transmission spectra and emission spectra from

several infrared LEDs.  To simulate the total light absorbance associated with a LED,

normalized emission spectra from several LEDs were multiplied and integrated, one LED

at a time, with each sample absorbance spectra.  The LEDs used in this simulation had

peak emission wavelengths of 700, 830, 840, 850, 880, 890, 940, 950 nm.  The part

number and manufacturer of these 8 LEDs are listed in table 4.3.3. The peak emission

wavelengths of these 8 LEDs comprise all that were readily available after surveying

several LED manufacturers.  Other peak emission wavelengths between 700 and 950 nm

are reportedly available but not readily and not without a bulk order.  All of the LEDs

used for the simulation had half peak bandwidths of 40 to 60 nm with approximately

gaussian shaped emission spectra.  The actual spectra used for the simulation were

obtained from the manufactures.  For this feasibility study, no effort was made to check

the LED wavelength correspondence, or calibration, with the spectrometer used to obtain

the almond transmission spectra.  In not performing this check, correspondence to a real

system may suffer.  However, the objective of this feasibility study was to determine if a

sorting device could be constructed from LEDs, not to select the ideal set of LEDs to be

used.
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Table 4.3.3.  Sources of LEDs used in the simulation experiment.

LED peak
wavelength (nm)

manufacturer
part number manufacturer

700 VL700XA UDT Sensors, Inc., Hawthorne, CA

830 L3989-01 Hamamatsu, Hamamatsu City, Japan

840 IR-840T5 UDT Sensors, Inc., Hawthorne, CA

850 IR-850T5 UDT Sensors, Inc., Hawthorne, CA

880 L2791-02 Hamamatsu, Hamamatsu City, Japan

890 L2690-02 Hamamatsu, Hamamatsu City, Japan

940 L2388-01 Hamamatsu, Hamamatsu City, Japan

950 LN54 Panasonic, Osaka, Japan

Principle components were computed for the responses of all LEDs and all possible ratios

of LEDs and selected by the stepwise discriminant analysis procedure (sle = 0.05 and sls

= 0.05).  Redundant ratios were not used, resulting in a total of 28 ratios.  Nuts were

classified into one of two groups, normal or concealed damaged if their mean gray level

was above or below 160, respectively.  Odd numbered samples were used for calibration

and even numbered samples used for validation.  Stepwise discriminant analysis was

performed on principle components of all LEDs, and on principle components of all

variable sets leaving one, two, or three LEDs left out.  

4.4 Real-time sorting device

a. Prototype design

A prototype device to detect almonds with concealed damage after drying but before

cooking was developed.  A constraint of the prototype design was that it had to be able to

inspect nuts at a rate of 40 nuts per second which is comparable to the rates of automated

color sorters at almond processing plants.  To achieve this rate with a single channel

system, almonds need to travel in a single file stream at a speed of approximately 1.0 m/s. 

To maintain a sorting rate of 40 nuts per second, a maximum of 25 ms can be used to

acquire the necessary information, process it, and activate an air nozzle to divert the nut



72

from the stream if it is determined to contain concealed damage.  Normal photodiode

array spectrometers cannot currently acquire a full transmission spectrum of a whole

almond in 25 ms using a 100 W halogen illumination source..

The inspection device measures transmitted light from six different LEDs as shown in

figure 4.4.1.  Table 4.4.1 lists the part number and manufacturer of the six different LEDs

used while figure 4.4.2 displays the actual normalized emission spectra from each of the

LEDs measured by a spectrometer (Ocean Optics, #PC1000, Dunedin, FL).  The LEDs

used for the prototype had emission wavelengths of 660, 830, 880, 890, 940, and 950 nm. 

These six LEDs were chosen from the set of LEDs studied in the simulated LED

experiment, section 5.3j (table 4.3.3).  The 660 nm LED was not studied in section 4.3j

because the transmission spectra was low pass filtered at 700 nm.  However, the 700 nm

LED was not readily available so the 660 nm LED was added as it has a closer peak

emission wavelength than any near infrared LED that was readily available.  The 840 nm

and 850 nm LEDs, studied in section 4.3j, did not emit light with sufficient power to

transmit through whole almonds.  A light intensity modulation/demodulation scheme

diagramed in figure 3.12.1 and discussed in section 3.12 was used for the prototype

design.  The light intensity of each LED was sine wave modulated at a different

frequency.  A 50 mm diameter plano-convex lens (Edmund Scientific Co., Barrington,

NJ, #E32,970) focused the light emitted from all the LEDs onto a short single, 3 mm

diameter, fiber optic cable, (Edmund Scientific Co., Barrington, NJ, #P38659).  Th fiber

optic cable was used to diffuse the light and deliver it to the nut.  The light emitted from

all LEDs needed to be diffused so that the path length that light travels through a nut

from each LED would be identical.  The transmitted light through the nut was detected

by an avalanche photodiode module (Hamamatsu, Hamamatsu City, Japan, #C5460). 

The dimensions of the sensor in this avalanche photodiode was a 1.5 mm diameter circle. 

The photodiode module was not temperature compensated but the temperature in the

room where all testing was performed was maintained at 25°C ± 2°C.  The signal from

the avalanche photodiode was input to a digital signal processing board (DSP) (Dalanco

Spry, Rochester, NY, #310).  The DSP board was equipped with a TMS320C31 digital

signal processor and mounted into an ISA slot of a 60 MHz Pentium personal computer
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(Micron Electronics, Inc., Nampa, ID).  The DSP board performed a discrete Fourier

transform on the input signal from the avalanche photodiode.  The demodulated response

from each LED was transferred to the PC where the response from each LED was used to

classify the nut.

A schematic of the driver circuit for the LEDs is shown in figure 4.4.3.  The modulating

sine waves were generated with precision, serially programable, sine wave generators

(Micro Linear, San Jose, CA, ML2035).  The sine wave generators output a sine wave at

a frequency determined by an input clock frequency and a 16 bit digital word serially

programed into the sine wave generator.  The sine wave frequency, fout, was given by

equation 4.4.1 which was provided by the sine wave generator manufacturer

where x was the decimal equivalent to the 16 bit word and fclock was the input clock

frequency.  The maximum sine wave frequency for the ML2035 was 25KHz.  To obtain

the maximum frequency, per equation 4.4.1, a minimum input clock frequency of

3.2MHz must be provided.  A 3.6864MHz TTL input clock (SaRonix, Palo Alto, CA,

#S1500) was used as this was one of the lowest frequency clocks, readily available.  This

input clock frequency gave the sine wave generator a resolution of 0.44Hz.  The 16 bit

word, to determine the output of a sine wave generator, was output by a PC digital

interface card (Keithly Metrabyte, Taunton, MA, PIO-24).  The program controlling the

digital output card to send it the proper 16 bit number is listed in appendix G.  The 16 bit

word is transmitted serially to the sine wave generator from least significant bit first to

most significant bit last.  Sine wave modulating frequencies of 9KHz, 12KHz, 15KHz,

18KHz, 21KHz, and 24KHz were used.  These frequencies were chosen because their

periods were all integer multiples of the sampling period, 1.67 ms.  The DSP board was

programed to sample 300 points at 180KHz which requires 1.67ms.  Furthermore, the

resolution of the discrete Fourier transform (DFT) with these sampling parameters was

600Hz.  Therefore, each peak in the frequency spectrum due to a modulation frequency

coincided with a computed point in the DFT.
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The magnitude of the sine wave driving the LEDs was from -2.5 volts to +2.5 volts.  The

cathodes of all LEDs were connected to a -5 volt source, resulting in a voltage

differential across the LED ranging from 7.5 volts to 2.5 volts.  The minimum of a 2.5

volt differential across the LEDs was required to prevent to the LED from turning

completely off and losing the sine wave shape of the emitted light intensity.  The

combined light from all LEDs transmitted through almonds caused to avalanche

photodiode output signal to range from 0.5 volts to 3.0 volts.  The input voltage range of

analog to digital (A/D) converter on the DSP board was 0.0 to 5.0 volts.  The A/D

converter had a resolution of 14 bits so the digital output of the A/D converter ranged

from approximately 1640 to 8200 (i.e. between 12 or 13 bits). 

Figure 4.4.1. Schematic of sorting machine.
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Figure 4.4.2.  Normalized emission spectra from the six LEDs used on the sorting
machine.  Spectra obtained after LEDs were burned in for 140 hours.
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Fig ure

4.4.3.  LED driver circuit for automated sorting machine.
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Table 4.4.1.  Sources of LEDs used for the prototype and modulation frequencies.

LED peak
wavelength (nm)

modulation
frequency

(KHz)
manufacturer
part number manufacturer

660 9 SL660WCT3 UDT Sensors, Inc., Hawthorne, CA

830 12 L3989-01 Hamamatsu, Hamamatsu City, Japan

880 21 L2791-02 Hamamatsu, Hamamatsu City, Japan

890 24 L2690-02 Hamamatsu, Hamamatsu City, Japan

940 15 L2388-01 Hamamatsu, Hamamatsu City, Japan

950 18 LN54 Panasonic, Osaka, Japan

To minimize analysis time, the DFT of the avalanche photodiode output signal was

computed for only the six modulating frequencies of the LEDs.  This method allowed

computation of the six DFT points concurrently with the data acquisition.  The

trigonometric form of the DFT equation (3.8.6) is shown here again as equation 4.4.2

where  is the discrete Fourier transform at frequency n/NTs, N is the total~( )F n
NTs

number of samples (300), Ts is the time interval between samples, n is an integer set to

determine the frequency of the specific DFT point, f(t) is the signal from the avalanche

photodiode, w(t) is the window function, )’(t) is the sampling function, and k is an

integer from 0 to N-1 defining the sample number in sequential order.  The real and

imaginary components of equation 4.4.2 can be computed each time a sample is acquired

and a running sum of these quantities can be stored.  Thus, upon acquiring N number of

samples, the value of equation 4.4.2 only needs to be computed for k=N-1 and added to

the running sum to obtain the DFT at frequency n/NTs.  The PC program listed in

appendix H computes the Hanning window value for each k, the cos(2Bnk/N), and

sin(2Bnk/N) values for each k at each of the six modulation frequencies specified by n. 

These parameters are loaded to the DSP memory and called by the DSP when needed. 

The program listed in appendix I is an assembly language program to control the analog
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to digital conversion and perform the DFT on the DSP.  When a nut is not present, the

photodiode saturates, resulting in a DC signal with near zero frequency response at the

modulating frequencies.  When the photodiode signal drops below a set threshold, then

the presence of a nut is detected and the DSP computes twelve consecutive DFTs. 

Computation of twelve DFTs requires approximately 20 ms, which is within the time

frame allowed to inspect 40 nuts per second.  Occasionally, a nut would pass by the

photodiode in less than 20 ms, either because the nut was of a short length, or it was

sliding faster than normal.  When this happens, the avalanche photodiode would saturate

and output a DC signal at approximately five volts.  The PC program (appendix H)

checks that all magnitudes at the modulation frequencies in each of the twelve DFTs

exceed a preset threshold to assure that the photodiode is not saturated.  If twelve good

DFTs were acquired, they would be stored.  If twelve good DFTs are not acquired, the

PC will flag the user and the nut would be run again until twelve good DFTs are

acquired.

The signal from the avalanche photodiode was very noisy due to the high gain required to

detect the transmitted light through whole almonds.  It was found that use of a Hanning

window function, rather than a rectangular window function, applied over the sampling

period significantly reduced the effect of noise.  To test the noise effects on the resulting

DFT, an almond was held over the photodiode and 30 responses, each comprising the

average of 12 DFTs, from each LED were recorded.  With a rectangular sampling

window function, the highest coefficient of variance of the mean LED response was 11%. 

In contrast, when a Hanning sampling window function was used, the highest coefficient

of variance of the mean LED response was found to be 0.6%.

b. Prototype  testing

The prototype was evaluated using a sample of 324 Mission almonds from the 1997

harvest.  Nuts were exposed to the long moisture treatment as described in section 4.3a. 

Half of these nuts were then dried to their original bulk mass in an air convection dryer at

55°C and the other half dried at 110°C as described in section 4.3a.  These nuts and 81

control nuts, or nuts not exposed to moisture and drying treatments, were individually
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inspected by the prototype device.  Nuts were inspected in separate batches of 81 nuts. 

Before and after inspecting a batch, LED light emission standards were measured by

placing a 0.1% transmission neutral density filter (Ealing, Holliston, MA, #35-5941)

between the photodiode and the fiber optic and the photodiode signal was sampled as if a

nut were present.  The average of the two LED emission standards were used to

normalize the absorbance for each nut in the batch.  The LED emissions measured before

and after each batch never deviated more than 1% from each other.  The 12 DFTs

obtained while the nuts were sliding by the photodiode were stored for analysis.  After

obtaining the LED light transmission for all nuts, they were cooked for 90 minutes at

135°C in a convection oven as described earlier in this section.  After cooking, the nuts

were split at the suture, photographed, and the mean gray level of the kernel half was

measured as discussed earlier in section 4.3d.

In addition to testing the prototype with almond samples, the consistency of the 12 DFTs

were tested by sliding a small rectangular piece of Teflon through the device.  When no

nut is present between the photodiode and fiber optic, the photodiode is saturated by the

unobstructed light from the LEDs.  The step response of the photodiode in going from a

saturated state to accurately measuring the modulated LED signal when a nut suddenly

blocks the light incident on the photodiode needed to be determined.  As a nut passed by

the photodiode, twelve DFTs were taken.  This, in effect, samples each LED twelve times

across the length of the nut.  In an ideal case, the twelve LED samples for each individual

LED should be the same when the Teflon piece is inspected by the prototype.  However,

due to frequency response limitations of the photodiode, this may not be the case.  The

main objective of this test is to determine if the first few DFTs are equivalent to the rest

of the DFTs.  The Teflon piece (McMaster-Carr, Los Angeles, CA, #873K13) was 6.35

mm thick, 38.1 mm long, and 12.5 mm wide.  The Teflon piece was passed through the

prototype 60 times and the 12 DFTs acquired for each pass were saved in sequential

order.  This resulted in a data set containing 60 sets of  twelve DFTs numbered, one

through twelve, in the order taken.  Afterwards, Tukey's Studentized Range Test (SAS

Institute Inc., Cary, NC, proc glm), with " = 0.05, was used to test the equivalence of the

mean DFT value for each of the twelve sequential samples for each individual LED.  The
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means of the twelve DFT values were tested for all six LEDs.  The means of the twelve

samples for a particular LED determined to be not significantly different from each other

at the " = 0.05 level were averaged and used for prediction of concealed damage. 

c. Prediction of concealed damage with stepwise discriminant analysis

A discriminant function was developed to classify nuts into one of two categories,

concealed damaged or normal with LED absorbance values, ratios of absorbance values,

and differences in absorbance values.  The discriminant analysis was performed with the

SAS proc discrim and proc princomp (SAS Institute Inc., Cary, NC).  Each LED

absorbance value was normalized by the mean absorbance values of all six LEDs.  All

normalized LED absorbance values, all possible ratios of normalized absorbance values

and all possible differences of two normalized absorbance values were computed. 

Redundant ratios and differences were not used, leaving a total of 15 each.  Table 4.4.2

shows the ratios and differences used in the analysis. Three sets of principle components

were computed, one for the normalized absorbance values, a second set for ratios, and a

third for the differences.  Principle components were selected for classifying nuts as

concealed damaged or normal with stepwise discriminant analysis using a significance

for entry and elimination from the model of 0.05.  Equal a priori probabilities for normal

and concealed damage were used.  Covariance matrices were tested for equivalence using

the pool = test option in SAS.  The stepwise selection was trained using odd numbered

samples only.  Nuts in this training set were considered concealed damaged if their mean

gray level, measured from imaging after cooking, was below 160.  The even numbered

samples were used as a validation set.  Discriminant analysis was performed using all

variables selected by the stepwise procedure.  After performing discriminant analysis

with all variables selected by the stepwise procedure, the least significant principle

component, determined from the stepwise procedure, was eliminated and discriminant

analysis was performed again.  This was repeated until the error rate of the validation set

reached a minimum.
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Table 4.4.2.  List of ratios and differences used for analysis.  Subscript denotes peak
emission wavelength of the LED in nm.

ratios differences

A830/A660 A830-A660

A880/A660 A880-A660

A890/A660 A890-A660

A940/A660 A940-A660

A950/A660 A950-A660

A880/A830 A880-A830

A890/A830 A890-A830

A940/A830 A940-A830

A950/A830 A950-A830

A890/A880 A890-A880

A940/A880 A940-A880

A950/A880 A950-A880

A940/A890 A940-A890

A950/A890 A950-A890

A950/A840 A950-A840

d. Prediction of concealed damage with regression analysis

A prediction equation was developed with mean gray level of the cooked almond kernels

as the dependent variable and principle components of the LED data as independent

variables.  As with the discriminant analysis procedure in the previous section, three sets

of principle components were computed, one for normalized absorbance values, a second

set for ratios of normalized absorbance values, and a third for differences between

normalized absorbance values.   The same 15 ratios and 15 differences shown in table

4.4.2 were used for this analysis as well.  Principle components were selected for

classifying nuts as concealed damaged or normal with by comparing the adjusted R2 of

all possible combinations of principle components.  The odd numbered samples were
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used for calibration while the even numbered samples were used as a validation set. 

After model selection by the adjusted R2 procedure on the calibration set, the last

principle component, determined from the stepwise procedure on the validation set, was

eliminated and regression was performed again.  This was repeated until the standard

error of prediction of the validation set reached a minimum.  For classification, nuts were

considered concealed damaged if their predicted mean gray level was below 160.

For comparison purposes, regression analysis was also performed with the mean gray

level as the dependent variable and the six absorbance, fifteen ratio and fifteen difference

values as independent variables without transforming them into principle components. 

Regression models were selected by comparing the model adjusted R2 of all possible

combinations of ten or less variables.  To speed the computation of adjusted R2 for the

models, the effect of multicollinearity was reduced by eliminating highly correlated

(|r|>0.9) independent variables.  A correlation matrix for all independent variables was

computed.  If two independent variables were highly correlated (|r| > 0.9), then the

variable with the lower correlation with mean gray level was eliminated.  When no

independent variables remained with |r| > 0.9, then adjusted R2 model selection was

performed on the remaining variable set. 
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5. RESULTS AND DISCUSSION

5.1 Field Experiment Results

The mean temperature, across time, of the nuts from all windrow treatments remained

within 0.2°C of the mean ambient temperature for the duration of the three day

temperature monitoring. The minimum and maximum ambient temperature always

deviated from the minimum and maximum temperature of the nuts, respectively, in the

windrows by 2°C to 4°C.  This suggests that respiration of the wet almonds and leaves in

the windrow is not raising the temperature of nuts within the windrow.  The average

ambient temperature during the Nonpareil experiment was 25.2°C and the average

ambient temperature for the Mission almond experiment was 19.2°C.  The temperature of

the nuts from each treatment always remained within 1°C of each other.  The moisture

contents for each day for all treatments of Mission almonds are shown in figure 5.1.1. 

Similar moisture trends were seen with the Nonpareil almonds except that their initial

kernel moisture content was 12.6% d.b.  The 3 cm irrigated windrow samples reached

21.7% moisture after four days.  The incidence of almonds with concealed damage,

observed after 5 days in the orchard, increased with more severe irrigation treatments and

incidence was higher among nuts held in windrows compared to scatted nuts, as can be

seen in table 5.1.1.

Table 5.1.1.  Incidence of concealed damaged nuts observed after drying samples
removed after five days in the orchard.

irrigation

scattered nuts with

concealed damage (%)

windrowed nuts with

concealed damage (%)

none 0 0

1 cm 4 12

3 cm 3 16
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Figure 5.1.1.  Moisture content changes for windrowed and scattered nuts for treatments
of 0 cm, 1 cm, and 3 cm sprinkle irrigation.

5.2 Chemical tests

a. Batch tests

The results of the chemical assay tests are shown in table 5.2.1.  The results of the color

and concealed damage incidence tests are shown in table 5.2.2.  A correlation matrix of

all measured properties after cooking is displayed in table 5.2.3.  Tables 5.2.4 through

5.2.8 show the results of Tukey's Studentized Range (HSD) Test, " = 0.05, on means of

the chemical and color measurements after each treatment.  Table 5.2.4 lists the means
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test results on the chemical measurements after nuts were moisture treated but before

drying.  Tables 5.2.5 and 5.2.6 list the results of the means tests on the chemical and

color measurements obtained after drying but before cooking.  For table 5.2.5, the results

of the different drying treatments, measured after drying, are pooled and the means from

the different moisture treatments are tested.  Conversely, in table 5.2.6, the results of the

different moisture treatments, measured after drying, are pooled and the means from the

different drying treatments are tested.  The means test results for chemical and color

measurement obtained after cooking are shown in table 5.2.7 for the different moisture

treatments, with drying effects pooled; and, in table 5.2.8 for the different drying

treatments, with the moisture effects pooled.

It appears that most of the carbonyl group reactants are formed during exposure to

moisture. After both the long and short moisture treatments, there was a significant

decrease (" # 0.05) in sucrose and increase in glucose between the control and moisture

treated samples, table 5.2.4.  The loss of sucrose and increase in glucose suggests

invertase activity is elevated when dormant nuts become rehydrated.  This has also been

observed in almonds by Reil et al. (1996) and in macadamia nuts by Prichavudhi and

Yamamoto (1965).  Also after both the long and short moisture treatments, there was a

significant decrease (" # 0.05) in oil refractive index, table 5.2.4.  The mean oil

refractive index from the short moisture treatment was significantly less than the control

and the mean oil refractive index from the long moisture treatment was significantly

lower than the short moisture treatment mean, table 5.2.4.  This suggests increased oil

oxidation at higher moisture contents.  The oxidized fatty acid can form into a carbonyl

compound and bind to proteins just as sugars do.  

As can be seen from tables 5.2.2 and 5.2.6, the color of almond kernels can change

during the high temperature drying process.  The mean C.I.E. L* and a* values of the

high temperature drying treatment are significantly different (" # 0.05) than the control

and low temperature drying treatments.  This suggests that the Maillard reaction proceeds

into the intermediate stage during high temperature drying.  A characteristic of the

Maillard reaction intermediate stage is a slight yellowing of the food (Hodge and Osman,
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1976).  Also after drying, the mean soluble solids content and sucrose for the low and

high temperature drying treatments, as well as the two moisture treatments are

significantly lower  (" # 0.05) than the controls, tables 5.2.5 and 5.2.6.  The loss of

soluble solids can be due to sugars binding to proteins and losing their solubility.  Also,

protein folding during the intermediate stage of the Maillard reaction reduces soluble

solids content.   

Basic amino acid concentration measured after cooking had the highest correlation

(r=&0.84) with incidence of concealed damage observed after cooking.  Of the color

measurements, C.I.E. L* value of cooked nuts had the highest correlation (r = -0.75) to

the observed incidence of concealed damage.  The lower the C.I.E. L* value, the darker

the cooked almond powder appeared to the eye.  Possibly, cracks on the sliced surface of

the kernel added error into the C.I.E. L* measurement.  Also, the C.I.E. a* chromaticity

of cooked nuts had the highest correlation (r = -0.77) with the basic amino acid

concentration. 

The incidence of concealed damage is significantly reduced for the lower temperature

drying experiments.  None of the control nuts had concealed damage, 1.2% of the low

temperature dried nuts had concealed damage, while 15.0% and 9.6% of the high

temperature dried nuts had concealed damage with long moisture exposure and short

moisture exposure respectively.  As can be seen from table 5.2.8, the mean C.I.E. L*

value, mean basic amino acids and mean incidence of concealed damage for the low

temperature drying treatment are not significantly different than the control at the 0.05

level.  In contrast, mean C.I.E. L* value, mean basic amino acids and mean incidence of

concealed damage for the high temperature drying treatment are significantly different, at

the 0.05 level, than the control and low temperature drying treatments.  These results

suggest that lower drying temperatures can prevent browning due to concealed damage. 

This observation will be supported further in the discussion of the individual nut physical

property tests, section 5.3b. 
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An ANOVA was performed with concealed damage incidence as the dependent variable

and the moisture treatment (none, short, long), drying treatment (none, low, high), and

the interaction of moisture and drying treatments as the independent variables.  The R2

for the model was 0.95.  Moisture and drying treatment were significant at the 0.0001

level while moisture-drying interaction was significant at the 0.001 level.  

The water soluble solids content measured after cooking had a high correlation (r = -

0.77) with incidence of concealed damage.  From table 5.2.1, the loss of water soluble

solids appears to occur during the drying process.  The loss of water soluble products is

expected in the early and intermediate stages of the Maillard reaction.  In the early stage,

sugars lose solubility as they bind with proteins.  In the intermediate stage, protein

folding causes additional loss of soluble solids (Hodge and Osman, 1976).  

Table 5.2.1. Mean and standard deviation of all chemical assays.
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mean std  mean std  mean std mean std mean std mean std
none none no 6.0% 0.0% 0.09 0.06 28.50 0.14 30.1 0.7 0.201 0.003 1.4697 0.0001 
short none no 18.8% 1.2% 1.44 0.21 25.58 0.33 29.3 1.0 n/a 1.4642 0.0002 
long none no 15.7% 0.3% 1.58 0.19 25.29 0.46 29.2 0.5 n/a 1.4637 0.0001 
short 55 no 6.0% 0.0% 0.55 0.06 25.32 0.28 27.9 0.4 n/a 1.4620 0.0001 
short 110 no 6.0% 0.0% 0.06 0.03 25.26 0.29 27.7 0.4 n/a 1.4640 0.0005 
long 55 no 6.0% 0.0% 0.48 0.05 25.19 0.30 27.9 0.2 n/a 1.4625 0.0002 
long 110 no 6.0% 0.0% 0.04 0.01 25.24 0.13 26.7 0.6 n/a 1.4640 0.0001 
none none yes 3.1% 0.1% 0.00 0.00 25.30 0.25 28.4 0.6 0.190 0.003 1.4679 0.0001 
short 55 yes 3.7% 0.2% 0.00 0.00 25.26 0.21 29.7 0.3 0.200 0.003 1.4644 0.0001 
short 110 yes 4.1% 0.1% 0.00 0.00 25.07 0.17 27.4 0.5 0.183 0.002 1.4652 0.0001 
long 55 yes 4.1% 0.1% 0.00 0.00 25.25 0.14 31.2 0.5 0.198 0.007 1.4648 0.0002 
long 110 yes 3.4% 0.2% 0.00 0.00 25.11 0.20 26.7 0.4 0.173 0.004 1.4648 0.0001 
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Table 5.2.2. Color and concealed damage incidence results.

CIE color space incidence
moist dry L* a* b* of CD

treatment temp (°C) cooked? mean std mean std mean std mean std
none none no 63.4 0.9 3.3 0.3 11.5 0.4 0.0% 0.0%
short none no 57.2 1.5 3.3 0.3 10.9 0.5 n/a
long none no 56.2 0.3 3.3 0.1 10.5 0.3 n/a
short 55 no 61.0 0.8 3.8 0.2 11.4 0.4 n/a
short 110 no 60.6 0.4 4.0 0.1 12.4 0.3 n/a
long 55 no 64.9 0.4 3.1 0.1 11.9 0.1 n/a
long 110 no 58.4 0.5 5.0 0.1 11.7 0.3 n/a
none none yes 60.3 0.7 4.7 0.1 12.1 0.2 0.0% 0.0%
short 55 yes 62.2 0.7 3.9 0.2 12.2 0.2 1.2% 1.6%
short 110 yes 56.0 0.5 5.2 0.1 12.4 0.2 9.6% 1.6%
long 55 yes 58.5 0.6 4.7 0.2 11.3 0.4 1.2% 1.3%
long 110 yes 56.9 0.4 5.2 0.1 12.4 0.2 15.0% 2.1%

Table 5.2.3.  Correlation matrix of measured chemical and physical properties on nuts
after cooking.  Correlation values with a magnitude greater than 0.5 are listed in bold.
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glucose 0.81
sucrose 0.90 0.87 

CIE L* value 0.49 0.56 0.66
CIE a* value -0.68 -0.66 -0.77 -0.94 
CIE b* value -0.45 -0.26 -0.45 0.34 0.46

oil refractive index 0.62 0.71 0.82 0.59 -0.58 0.31
% soluble solids 0.42 0.29 0.36 0.55 -0.60 -0.72 0.17

basic amino acids 0.46 0.34 0.45 0.75 -0.77 -0.53 0.33 0.82 
concealed damage

incidence
-0.30 -0.30 -0.39 -0.75 0.70 0.54 -0.48 -0.77 -0.84
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Table 5.2.4.  Moisture treatment means test results for chemical measurements after
moisture treatment but before drying.  Nuts were not exposed to any drying or cooking
treatments.  Means with the same group letter are not significantly different at the 0.05
level determined by Tukey's Studentized Range (HSD) Test.

glucose
mg/g dry
matter

sucrose
mg/g dry
matter

soluble
solids
(%)

oil refractive
index

moisture
treatment group mean group mean group mean group mean

none A 0.09 A 28.50 A 30.14 A 1.4697 
short B 1.44 B 25.56 A 29.30 B 1.4642 
long B 1.58 B 25.30 A 29.20 C 1.4637 

Table 5.2.5.  Moisture treatment means test results for chemical and color measurements
taken after drying but before cooking.  Data from the different drying treatments was
pooled.  Means with the same group letter are not significantly different at the 0.05 level
determined by Tukey's Studentized Range (HSD) Test.

glucose
mg/g dry
matter

sucrose
mg/g dry
matter

soluble
solids
(%)

oil refractive
index CIE L* CIE a* CIE b*

moisture
treatmentgroup mean group mean group mean group mean group mean group mean group mean

none A 0.09 A 28.50 A 30.14 A 1.470 A 63.44 A 3.34 A 11.52 
short C 0.31 B 25.29 B 27.83 B 1.463 B 61.63 B 3.92 A 11.90 
long B 0.24 B 25.22 B 27.33 B 1.463 B 60.82 B 4.01 A 11.82 

Table 5.2.6.  Drying treatment means test results for chemical and color measurements
taken after drying but before cooking.  Data from the different moisture treatments was
pooled.  Means with the same group letter are not significantly different at the 0.05 level
determined by Tukey's Studentized Range (HSD) Test.

glucose
mg/g dry
matter

sucrose
mg/g dry
matter

soluble
solids
(%)

oil refractive
index CIE L* CIE a* CIE b*

drying
treatmentgroup mean group mean group mean group mean group mean group mean group mean

none A 0.09 A 28.50 A 30.14 A 1.470 A 63.44 A 3.34 A 12.04 
low B 0.52 B 25.26 B 27.92 B 1.464 A 62.94 A 3.43 A 11.68 

high A 0.03 B 25.25 B 27.24 C 1.462 B 59.51 B 4.50 A 11.52 
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Table 5.2.7.  Moisture treatment means test results for measured chemical and color
measurements taken after cooking.  Data from the different drying treatments was
pooled.  Means with the same group letter are not significantly different at the 0.05 level
determined by Tukey's Studentized Range (HSD) Test.

soluble
solids
(%)

oil refractive
index CIE L* CIE a* CIE b*

basic amino
acids

mmol/g dry
matter

concealed
damage

incidence
(%)

moisture
treatmentgroup mean group mean group mean group mean group mean group mean group mean

none A 28.38 A 1.468 A 60.28 AB 4.68 AB 12.1 A 0.190 A 0.0 
short A 28.54 B 1.465 AB 59.07 B 4.55 A 12.33 A 0.192 B 5.4 
long A 28.95 B 1.465 B 57.73 A 4.94 B 11.85 A 0.185 C 8.1 

Note: means of glucose and sucrose, not shown in this table, were not significantly different for all
three drying treatment levels.

Table 5.2.8.  Drying treatment means test results for measured chemical and color
measurements taken after cooking.  Data from the different moisture treatments was
pooled.  Means with the same group letter are not significantly different at the 0.05 level
determined by Tukey's Studentized Range (HSD) Test.

soluble
solids
(%)

oil refractive
index CIE L* CIE a* CIE b*

basic amino
acids

mmol/g dry
matter

concealed
damage

incidence
(%)

drying
treatmentgroup mean group mean group mean group mean group mean group mean group mean

none B 28.38 A 1.468 A 60.28 A 4.68 AB 12.1 AB 0.190 A 0.0 
low A 30.45 B 1.465 A 60.33 B 4.30 B 11.75 A 0.199 A 1.2 

high C 27.04 C 1.465 B 56.47 C 5.19 A 12.43 B 0.178 B 12.3 

Note: means of glucose and sucrose, not shown in this table, were not significantly different for all
three drying treatment levels.

b. Post-dry water soluble solids content and post-cook color

A good correlation between post-cook color and post-dry soluble solids was found from

the experiment measuring soluble solids contained after drying but before cooking and

internal kernel color after cooking.  The post-cook C.I.E. a* value had the highest

correlation, r = -0.87, with post-dry soluble solids while the post-cook C.I.E. L* value

had a correlation, r = 0.74, with post-dry soluble solids.  A plot of the C.I.E. a*

chromaticity measured on the cooked kernel half and water soluble solids measured from

the half before cooking is shown in figure 5.2.1. 
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Figure 5.2.1.  Plot of pre-cook water soluble solids versus post-cook C.I.E. a* value.

5.3. Physical and spectral property tests

a. Scoring concealed damage severity

An image based scoring system was developed with the mean pixel intensity and percent

of pixels below intensity 120.  The image based scoring was performed with discriminant

analysis using the mean pixel intensity and percent of pixels darker than 120 as features

and the visual scores as the classes.  The classes defined by the discriminant analysis

training step were defined as the image based concealed damage scores.  The relationship

between the visual concealed damage scores, described in table 4.3.1, and the image-

based concealed damage scores is shown in table 5.3.1.  
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Table 5.3.1  Correspondence between visual and image-based concealed damage scores.

Visual 

concealed

damage

score

Image-based concealed damage score

1 2 3 4 5

1 81.25% 17.97% 0.78% 0.0% 0.0%

2 30.53% 50.44% 19.03% 0.0% 0.0%

3 0.0% 20.37% 71.6% 8.02% 0.0%

4 0.0% 0.94% 31.13% 37.74% 30.19%

5 0.0% 0.0% 0.0% 19.05% 80.95%

Figure 5.3.1.  Correspondence between mean gray level of kernel images and visual
concealed damage score.
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b. Effect of moisture, drying, and storage treatments

Using data from the moisture and drying treatments discussed in section 4.3a, and storage

treatments described in sections 4.3a and 4.3e, an ANOVA was performed with drying

method (none, low temperature, high temperature), moisture exposure (none, short, long),

and storage (short, medium, long) as independent variables, and image based concealed

damage score as the dependent variable.  The medium storage treatment is the seven

month storage at 10°C and 45% relative humidity (section 4.3e) while the long storage

treatment is the year long storage at 4°C and 90% relative humidity (section 4.3a).  The

ANOVA table is shown below in table 5.3.2.  Drying, moisture exposure, and the

interaction between drying and moisture treatments are all significant at the 0.0001 level. 

Storage was not significant at the 0.05 level. 

Table 5.3.2  ANOVA results for treatment effect on concealed damage score.  
                                     Sum of            Mean
Source                  DF          Squares          Square   F Value     Pr > F

Model                    6     414.79475309     69.13245885     89.51     0.0001

Error                  641     495.09259259      0.77237534

Corrected Total        647     909.88734568

                  R-Square             C.V.        Root MSE        IM_SCORE Mean

                  0.455875         35.97562       0.8788489            2.4429012

Source                  DF        Type I SS     Mean Square   F Value     Pr > F

MOIST                    2     208.21656379    104.10828189    134.79     0.0001
DRY                      2     129.80658436     64.90329218     84.03     0.0001
DRY*MOIST                2      76.77160494     38.38580247     49.70     0.0001

Source                  DF      Type III SS     Mean Square   F Value     Pr > F

MOIST                    2     105.54444444     52.77222222     68.32     0.0001
DRY                      2     104.66872428     52.33436214     67.76     0.0001
DRY*MOIST                2      76.77160494     38.38580247     49.70     0.0001

Table 5.3.3 shows the fraction of nuts for each moisture/drying treatment classified into

each of the five image-based concealed damage classes.  For the long moisture treated

nuts dried at 110°C, 9.4% of the nuts were classified with a concealed damage score of

one or two and 92.6% were given a score of 3, 4 or 5.  In contrast, of the long moisture
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treated nuts dried at 55°C, 79.0% were given a score of one or two and only 21.0% were

given a score of 3, 4 or 5.  Similar results were obtained for the short moisture treated

nuts.  However, there was very little difference in concealed damage scores between the

control nuts (no moisture treatment and no drying) and nuts that were not exposed to

moisture to a drying treatment.  This confirms the results from the batch tests that

concealed damage can be reduced by use of lower drying temperatures.  From these

observations and the chemical assays, it appears that carbonyl compounds are formed in

almonds during exposure to moisture.  The Maillard reaction can proceed at low moisture

contents if its first stage is completed with Amadori product formation.  However, the

first stage of the Maillard reaction will be inhibited at water activities below 0.4, or 4% to

5% moisture for almonds.  If the first stage of the Maillard  reaction does not complete

before the moisture level drops, then the later stages will be inhibited.  It could be that the

lower temperature drying lowers the moisture of almonds before significant Amadori

product formation.  The heat from higher temperature drying accelerates the Amadori

product formation and allows the later stages of the Maillard reaction to occur during

roasting.  Further experimentation would be needed to confirm this hypothesis. 

The incidence of concealed damage scores of 4 and 5, as shown in table 5.3.3, are

considerably higher for the high temperature drying treatment than the concealed damage

incidences observed in the chemical tests shown in table 5.2.2.  The results for table 5.2.2

were based on visual inspection while the table 5.3.3 are based on image analysis. 

Another possible reason for the different results is that the moisture treatments used for

the chemical tests were less severe than the individual nut tests used to obtain the table

5.3.3 results.
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Table 5.3.3.  Percentage of nuts from each treatment combination classified into the five
image based concealed damage score levels.  Treatments are ordered from lowest
incidence of nuts with a concealed damage score of one to the highest.

moisture

treatment

drying

treatment

storage

treatment

image based concealed damage score

1 2 3 4 5

long 110°C long 0.00% 6.33% 35.44% 45.57% 12.66%

long 110°C medium 0.00% 7.41% 46.91% 39.51% 6.17%

long 110°C none 1.23% 6.17% 48.15% 40.74% 3.70%
short 110°C medium 1.23% 16.86% 46.91% 32.84% 2.53%

short 110°C none 2.47% 16.05% 41.98% 34.57% 4.94%

short 55°C none 15.19% 43.04% 27.85% 11.39% 2.53%

short 55°C medium 16.05% 40.34% 30.86% 11.43% 1.23%

long 55°C medium 27.16% 51.25% 20.23% 0.00% 1.28%

long 55°C none 30.86% 48.15% 19.75% 0.00% 1.23%

none 55°C none 33.33% 45.68% 20.99% 0.00% 0.00%

none none medium 33.33% 54.32% 11.11% 1.23% 0.00%

none none none 37.04% 55.56% 7.41% 0.00% 0.00%

none 110°C none 38.27% 50.62% 9.88% 1.23% 0.00%

Note: The long storage treatment, described in section 4.3a, was for 12 months at 4°C and 90%
relative humidity; the medium storage treatment, described in section 4.3e,  was for 7 months at
10°C and 45% relative humidity.

As can be seen in table 5.3.3, the treatment with the most concealed damaged nuts

exposed to the long moisture, 110°C dry, year storage treatment combination.  While the

storage was at 4°C, the humidity in this particular environment was approximately 90%. 

These are not normal storage conditions for almonds.  The humidity would normally be

lower.  For the nuts exposed to seven month storage at 45% relative humidity and 10°C

(section 4.3e), the effect of storage on severity of concealed damage is not noticeably

different compared to the concealed damage scores of nuts not stored.

c. Physical property test results

The presence of mold after moisture exposure, wet appearance after moisture exposure,

or type of nut kernel (single or double) have no apparent effect on severity of concealed

damage after cooking.  The nuts exposed to a short or long moisture treatment had a

mean gray level of 179.4 with a standard deviation of 34.7.  There were 14 nuts that
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developed mold during moisture exposure.  The moldy nuts had a mean gray level of

176.5.  There were 12 nuts that had a wet appearance after moisture exposure and these

had a mean gray level of 181.8.  And, the double kernel nuts had a mean gray level of

182.6.

For volume measurement by x-ray imaging, a linear relation between the measured

volume and pixel integration is shown in figure 5.3.2, the R2 is 0.87.  Data from this plot

is from the test set containing 49 control and 49 moisture treated nuts.  The measured

volume of the wood standards in all images were within 0.5% of each other so it was not

used to adjust the pixel integration figure.  Most of the discrepancy between measured

volume and pixel integration may be due to internal voids inside the kernel.  The

buoyancy method will include the internal voids with the nut volume, the x-ray

integration method will not include internal void volume.

Figure 5.3.2.  Graph of pixel integration versus measured nut volume by buoyancy.

A correlation matrix of all measured physical properties on individual nuts is shown in

table 5.3.4.  There was no large correlation between any of the pre-cook properties

measured and image based concealed damage score.  Soluble solids were not measured

on these nuts.  The mass change in nuts during the combined moisture treatment and

drying, computed with equation 5.3.1, had no correlation with concealed damage.  The
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loss of mass between drying and cooking, as measured by the mass loss ratio given by

equation 5.3.2, had a correlation of -0.34 with concealed damage.  This weak correlation

may indicate that concealed nuts have a very mild tendency to lose less moisture during

cooking than normal nuts.  The late stages of the Maillard reaction react with water.  This

could be a reason for this weak relation between mass loss through cooking and

concealed damage; however, more experimentation would be needed to confirm this.

mass loss ratio, drying = [(initial mass) - (post-dry mass)] / (initial mass)     (5.3.1)

mass loss ratio, cooking = [(initial mass) - (post-cook mass)] / (initial mass)     (5.3.2).

Table 5.3.5 shows the means of all the measured physical properties separated into the

five image based concealed damage groups.  The means were tested for equivalence at

α#0.05 with Tukey's Studentized Range Test.  For the five concealed damage scores, the

initial mass, post-dry mass, and post-cook mass are not significantly different at the 0.05

level.  Physical properties that had significantly different means between nuts with an

image score of 4 or 5 and nuts with image scores of 1 or 2 were: mass loss ratio (drying),

post-dry volume measured by x-ray imaging, post-cook C.I.E. L* a* b* values, post-cook

mean gray level, and post-cook percent pixels less than 120.   Note that higher concealed

damage scores tend to have significantly higher mean kernel volumes.  Post-cook C.I.E.

L* value and mean gray level had significantly different means for all five image based

concealed damage scores.  Note that nuts with concealed damage scores of four and five

had significantly lower mass loss ratios through drying than nuts with concealed damage

scores of one and two.  This indicates that the measured post-dry mass of nuts with

concealed damage was close to their initial mass.  In contrast, the post-dry mass of

normal almonds tends to be slightly greater than their original mass.
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Table 5.3.4.  Correlation matrix of individual nut properties.  Correlation values with a
magnitude greater than 0.5 are shown in bold.
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P-D mass 1.00 

P-C mass 1.00 1.00 

mloss, drying -0.14 -0.19 -0.17 

mloss, cooking -0.11 -0.14 -0.16 0.64 

P-D density 0.09 0.09 0.09 0.04 -0.01 

P-D volume 0.87 0.87 0.87 -0.13 -0.07 -0.32 

P-D. thickness 0.33 0.31 0.31 0.37 0.35 0.02 0.27 

P-C L* value -0.03 -0.03 -0.05 -0.02 0.24 0.07 -0.11 -0.05 

P-C a* value 0.09 0.09 0.11 -0.02 -0.35 -0.08 0.15 -0.03 -0.89 

P-C b* value 0.02 0.02 0.02 -0.02 -0.03 0.05 -0.04 -0.14 0.45 -0.09 

P-C mean gray -0.04 -0.04 -0.05 0.01 0.34 0.07 -0.10 -0.03 0.85 -0.83 0.31 

# pixels < 120 0.02 0.03 0.03 -0.16 -0.23 -0.04 0.06 -0.04 -0.65 0.52 -0.53 -0.72 

image CD score 0.10 0.10 0.11 -0.05 -0.34 -0.04 0.14 0.03 -0.82 0.80 -0.31 -0.94 0.75 

visual CD score 0.08 0.08 0.09 -0.01 -0.31 -0.06 0.14 0.05 -0.86 0.83 -0.32 -0.86 0.62 0.84 

Note: P-D stands for post-dry, P-C stands for post-cook, mloss stands for mass loss ratio, and CD
stands for concealed damage.
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Table 5.3.5.  Means of the measured physical properties for each of the five image based
concealed damage scores.   Means with the same group letter are not significantly
different at the 0.05 level determined by Tukey's Studentized Range (HSD) Test.
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E

10.00

D

18.22

D

115.9

E

61.8

D

4.34

A

Note: P-D stands for post-dry, P-C stands for post-cook, mloss stands for mass loss ratio, and CD
stands for concealed damage.

d. Spectral property results

The normalized mean transmission spectra and the second derivative spectra (10 nm gap)

from 700 nm to 1400 nm, obtained after drying but before cooking, for nuts with a

concealed damage score of 1 and 5 are shown in figure 5.3.4.  The normalized spectra is

computed by dividing each absorbance value of an individual nut’s spectrum by the mean

of all absorbance values in the spectra for that nut.  Normalization is required to

compensate for variations in nut thickness and kernel skin condition.  The second

derivative spectra is computed from the raw transmission spectra, not the normalized

spectra.  The mean normalized transmission spectra from 700 nm to 970 nm, obtained

after drying but before cooking, for nuts from all 5 concealed damage scores are shown
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in figure 5.3.7.  As can be seen from figure 5.3.4, the largest differences between means

of the concealed damage groups are at 700 nm, 930 nm and 1120 nm.  Figure 5.3.5 shows

the t-values at all wavelengths for the difference between means of nuts with concealed

damage scores of 1 and 5.  The program listed in appendix E was used to compute the t-

values.  Equal variances of the two groups was not assumed so the variances of the two

groups were not pooled when computing t-values.  The approximate t-value under the

assumption of unequal variances was computed, as recommenced by SAS (1994), using

equation 5.3.1  

where x6a is the mean of group a, sa is the standard deviation of group a, and na is the

number of samples in group a.  The largest t-value magnitudes between concealed

damage scores 1 and 5 are -0.7 at 1120 nm, followed by 0.42 at 930 nm and 0.34 at 700

nm.  The absorbance peak at 930 nm and possibly 1120 nm can be attributed to oil

(Tkachuk, 1987).  The concealed damaged nuts have less absorbance in this area,

possibly due to oxidation during moisture exposure.  Figure 5.3.8 shows the absorbance

spectrum of pure almond oil with a peak at 930 nm.  More research would be needed to

confirm this trend for different lengths of storage time.

Figure 5.3.6 shows the change in absorbance spectra of normal and concealed damaged

nuts during the moisture and drying treatments.  These plots were made by subtracting

the normalized absorbance spectrum obtained before any treatment was applied to the

nuts from normalized absorbance spectrum obtained after drying.  The curves in figure

5.3.6 represent the mean of these differences in absorbance values for concealed

damaged and normal nuts.  For this graph, concealed damaged nuts are those with an

image based concealed damage score of 4 or 5 and normal nuts are those with an image

based score of 1 or 2.  The concealed damaged nuts show a higher increase in 

absorbance around 700 nm after drying than normal nuts.  In contrast, normal nuts show
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Figure 5.3.4.  Mean normalized absorbance spectra from 700 nm to 1400 nm of almonds
measured after drying with concealed damage scores of 1 and 5 measured after cooking. 
The second derivative spectra was computed from the raw absorbance spectra using a 10
nm gap.
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Figure 5.3.6 Difference in mean normalized absorbance spectra before and after moisture
treatments and drying of concealed damaged nuts and normal nuts.  Concealed damaged
nuts had image-based concealed damage scores of 4 or 5 and the normal nuts had
concealed damage scores of 1 or 2.
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e. Prediction based on stepwise discriminant analysis

Results of the discriminant analysis using principle components of the normalized

absorbance, first derivative, and second derivative spectra are tabulated in Table 5.3.6. 

The error rate is the percentage of nuts in the validation set incorrectly classified.  The

false positive error rate is defined as the percentage of nuts, in the validation set, with an

image based concealed damage score of 1 or 2 being classified as concealed damaged. 

The false negative error rate is defined as the percentage of nuts, in the validation set,

having an image based concealed damage score of 4 or 5 being classified as normal. 

Table 5.3.6.  Results of discriminant analysis using principle components of different
portions on the spectra.  Results are ordered from lowest error rate to highest. 
Abbreviations: A=absorbance, A’ = first derv.,A” = second derv.

spectra
wavelength 
range (nm)

 total error
rate (%)

 false
positives

(%)

false
negatives

(%)

number of
principle

components
used

absorbance &
1st  derv & 2nd derv. 1000 to 1300 12.4 1.4 11.1 5 A, 1 A’, 2 A”

1st  derivative 1000 to 1300 14.2 1.4 15.9 8 A’

absorbance &
1st  derv & 2nd derv. 700 to 975 15.0 5.4 11.1 1 A, 3 A’, 1 A”

absorbance 1000 to 1300 15.4 1.4 12.7 10 A

1st  derivative 700 to 975 15.6 2.0 11.1 7 A’

absorbance 700 to 975 16.0 2.7 12.7 5 A

absorbance &
1st  derv & 2nd derv. 700 to 1300 16.0 2.7 12.7 3 A, 2 A’, 2 A”

absorbance 700 to 1300 16.6 4.1 12.7 8 A

2nd derivative 1000 to 1300 18.3 0.7 11.5 8 A”

1st  derivative 700 to 1300 18.6 1.4 20.6 7 A’

2nd derivative 700 to 1300 20.8 1.4 15.9 11 A”

2nd derivative 700 to 975 27.5 5.4 23.8 7 A”

The lowest total error rate, 12.4%, obtained by this method was using principle

components of the absorbance, first derivative, and second derivative spectra between

1000 and 1300 nm.  Most errors are false positives.  This classification model had false
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positive and false negative error rates of 1.4% and 11.1%, respectively.  Comparable

false positive and false negative error rates are obtained using only first derivative spectra

between 700 and 975 nm.  This is an important result because silicon light detectors,

sensitive between 700 and 975 nm, are less expensive, for a given signal to noise ratio,

than detectors sensitive to light between 1000 and 1300 nm.

f. Prediction with discriminant analysis using all combinations of three features

The five best models, based on error rate, for the discriminant analysis performed using

all possible combinations of three variables are shown in Table 5.3.7.  The lowest error

rate achieved with this method was 17.6% using first derivative parameters at 932.5 nm

with a 25 nm gap, 745 nm with a 50 nm gap, and 932.5 nm with a 5 nm gap.  Recall that

the analysis was performed on data containing normalized absorbances, all first

derivatives with forward difference gaps between 5 and 50 nm, all second derivatives

with a central difference gaps between 5 and 50 nm, all possible combinations of ratios of

two absorbance values, and all possible combinations of continuous areas less than 100

nm wide.
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Table 5.3.7.  Top five classification models using three variables.

feature type error rate specific wavelengths
first derivative: Awave(gap) 17.6%  A932.5(25)   A745(50)  A932.5(5) 

 18.8%  A932.5(25)   A712.5(5)   A930(40) 
19.1%  A930(40)   A862.5(45)  A862.5(5) 
23.1%  A922.5(25)   A720(20)   A737.5(15) 
23.5%  A912.5(45)   A712.5(5)   A735(30) 

 

ratio: Awave1/Awave2 18.2%  A920/A945 A760/A785 A910/A920

18.5%  A910/A950 A710/A750 A890/A900

19.1%  A910/A950 A710/A725 A780/A810

20.7%  A910/A945 A710/A735 A790/A805

21.0%  A900/A955 A710/A730 A780/A810

second derivative: Awave(gap) 18.8%  A900(50) A780(50) A790(10)

 19.1%  A900(50) A780(45) A790(10)

19.4%  A900(50) A710(10) A790(10)

19.8%  A900(50) A710(5) A790(10)

20.1%  A900(50) A710(5) A780(20)

areas: Awave 21.6%  A835 thru A850, A730, A855

22.2%  A835 thru A850, A705 thru A710, A865, 

22.5%  A830 thru A850, A705 thru A710, A845 thru A865

23.1%  A825 thru A840, A715 thru A720, A930 thru A935

23.5%  A825 thru A840, A715 thru A720, A930 thru A935
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g. Prediction with partial least squares regression

Table 5.3.8 shows the wavelength ranges used and the PLS regression results for

predicting mean gray level of the cooked nuts on the calibration data.  The classification

performance, based on the predicted gray level, on the validation set, of the top six PLS

equations, based on R value from the calibration set, are shown in Table 5.3.9.  Again,

the error is dominated by false negatives.

Table 5.3.8.  PLS calibration results from different wavelength ranges.

absorbance spectra

range (nm)

number of PLS

factors used R

standard 

error of calibration

(gray level)

705 - 760, 870 - 970 4 0.80 19.7

705 - 970 4 0.79 20.2

870 - 970 3 0.78 20.8

840 - 960 3 0.77 21.2

830 - 950 4 0.75 21.6

705 - 760, 840 - 960 3 0.74 22.1

705 - 760, 880 - 970 3 0.73 22.3

705 - 1300 5 0.72 23.8

1020 - 1200 1 0.42 30.7

Table 5.3.9.  Validation set classification performance of PLS equations.

absorbance spectra

range (nm)

false positives

(%)

false negatives (%) overall error

rate (%)

705 - 760, 870 - 970 3.0 48.8 18.1

705 - 970 3.0 50.0 18.5

870 - 970 3.0 52.4 19.3

840 - 960 3.0 56.4 20.6

830 - 950 3.0 58.8 21.4

705 - 760, 840 - 960 3.0 60.0 21.8



109

The error rates using stepwise discriminant analysis on principle components of large

portions of the spectra between 700 and 1300 nm, shown in Table 5.3.6, range from

12.4% to 27.5%, are somewhat better than the three variable discriminant models

obtained by selecting individual features within the spectrum where the error rates ranged

from 17.6% to 23.5%.  However, the three variable discriminant models only included

the portion of the spectrum between 700 and 970 nm.  The classification error rates using

the PLS regression equation obtained from absorbance spectra range from 18.1% to

21.8%.  Note that the PLS regression was not performed using first and second derivative

data, only absorbance data was used.  When only principle components of the absorbance

spectra were provided to the stepwise discriminant analysis procedure, the classification

error rate was 16% using the interval between 700 nm and 975 nm.  This is comparable

to the PLS results.  

h. Prediction with simulated LED absorbances

The simulated LED transmitted light responses yielded classification results comparable

to the methods previously discussed.  The lowest classification error rate on the

validation set, 17.7%, was obtained using principle components of 700 nm, 830 nm, 880

nm, 890 nm, 940 nm, and 950 nm LED absorbances.  Principle components of the

absorbance ratios were not chosen by the stepwise selection procedure.  A majority of the

classification errors, 55%, were made on nuts with a concealed damage score of three. 

These nuts were on the border between concealed damaged and normal.  Of the nuts with

image based concealed damage scores of 4 and 5, 20.6% were false negatives, or

classified as normal.  Of the nuts with image based concealed damage scores of 1 and 2,

only 3.3% were classified as concealed damaged.

Classification errors based on the simulated LED responses are not related to the 

moisture treatment or drying temperature applied to the nuts.  Most of the classification

errors, 74%, were false negatives.  For the two long moisture treatments, 50% of the

concealed damaged nuts from both the high and low temperature dried batches were

classified as normal.  For the two short moisture treatments, 43% of the concealed

damaged nuts from the high drying temperature batch were classified as normal and 40%
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of the concealed damaged nuts from the low drying temperature batch were classified as

normal. 

5.4. Real-time sorting device

a. Repeatability of DFT values

From the tests of sliding the rectangular Teflon piece through the prototype, it was

determined by Tukey's Studentized Range Test, that the mean intensity of the first two

DFTs was significantly different, at the 0.05 level, than the mean intensity of the last ten

DFTs.  This was true for all six LEDs.  The mean intensity of the last ten DFTs were

determined equivalent at the 0.05 level.  Because of these results, data from the first two

DFTs were not be used for prediction of concealed damage.  The average of the last ten

DFT values was used for prediction of concealed damage.

b. Classification based on discriminant analysis

Using the data from the prototype system and classification with discriminant analysis,

the minimum error rate of the validation set was 20.4% using three principle components,

two from the LED absorbance set and one from the LED difference set.  The stepwise

selection of principle components procedure was repeated for every model containing

only five LEDs.  The error rates of all the five LED models were at least 5.5% higher

than the model containing all six LEDs.  

From a processor’s perspective, it is desired to minimize the number of false positives, or

nuts classified as concealed damaged when, in fact, they are normal.  Classification from

a discriminant function is based on the a posteriori probability.  The false positives can be

reduced by increasing the normal nut a priori probability.  For example, a normal nut a

priori probability of zero results in a 100% false positive error rate while a normal nut a

priori probability of one results in a zero false positive error rate.  However, raising the

normal nut a priori probability increases the false negative error rate.  Table 5.4.1 shows

the false positive, false negative and total error rates of the validation set for a range of
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normal nut a priori probabilities.  The total error rate is the total number of incorrect

classifications divided by the total number of nuts in the validation set.  Using a normal

nut a priori probability of 0.7, there are 9.0% false positives and 28.8% false negatives

giving a total error rate of 14.3%.  Most of the incorrectly classified nuts are on the

border between actually being considered concealed damaged or normal.  Of the 9.0%

false positives, 83% have a mean gray level below 190 and would have a concealed

damage score of 3.  Of the 28.8% false negatives, 56% have a mean gray level above 130

and also would also have a concealed damage score of 3.  In this case, only 1.5% of the

almond samples showing little browning, or having a concealed damage score of 1 or 2,

were classified as concealed damaged.  Also, 16.2% of almond samples with severe

concealed damage, or having concealed damage scores of 4 or 5, were classified as

normal.  The errors from the two drying treatments used in this experiment are equally

divided.  The high temperature drying treatment comprise 55% percent of the

classification errors and the remaining 45% are from the low temperature drying

treatment.

Table 5.4.1.  Error rates at different posterior probability thresholds for classifying nuts
as normal or concealed damaged.

a priori probability for
normal almond

qnormal

false
positive

error rate

false
negative
error rate

total
error
rate

0.0 100.0% 0.0% 73.5%
0.1 54.9% 1.9% 40.8%
0.2 42.4% 1.9% 31.6%
0.3 33.3% 7.7% 26.5%
0.4 28.5% 9.6% 23.5%
0.5 22.2% 15.4% 20.4%
0.6 17.4% 19.2% 17.9%
0.7 9.0% 28.8% 14.3%
0.8 7.6% 32.7% 14.3%
0.9 2.8% 42.3% 13.3%
1.0 0.0% 100.0% 26.5%
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c. Classification based on regression analysis

A correlation matrix of the light absorbances measured with the prototype system before

cooking and mean gray level measured after cooking are shown in table 5.4.2.  The

absorbance from the 890 nm LED has the highest correlation, at r = 0.24, with mean gray

level.

Table 5.4.2.  Correlation matrix of the absorbance from the six LEDs with mean gray
level.

LED emission peak wavelength (nm)

660 830 880 890 940 950 

LE
D

 p
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(n

m
) 830 -0.59 

880 -0.75 0.80 

890 -0.46 -0.20 -0.15 

940 -0.86 0.17 0.46 0.55 

950 -0.84 0.17 0.41 0.51 0.95 

gray level -0.15 0.09 0.12 0.24 0.04 -0.02 

Three regression models were developed to predict the mean gray level of almonds after

cooking.  One regression model used principle components of the absorbance, ratio and

differences of LED light absorbance values.  Another regression model used the raw

LED absorbance, ratio and difference values after removing highly correlated values.  A

third regression model comprised only the six normalized LED absorbance values.  Nuts

were classified as concealed damaged or normal if their predicted mean gray level was

below or above 160, respectively.  For each of these three models, the adjusted R2 of the

validation set and classification error rates on the validation set are listed in table 5.4.3. 

The total error rate is the percent nuts incorrectly classified.  The false positive error rate

is the percentage of normal nuts classified as concealed damaged.  The false negative

error rate is the percentage of concealed damaged nuts classified as normal.

For the regression procedure using raw LED absorbance, ratio and difference values after

removing highly correlated independent variables, only twelve of the original 36
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independent variables were left after removing all the highly correlated independent

variables.  The remaining variables were: absorbance values from the 660, 830, 880, 890

and 940 nm LEDs, the ratio between 830 and 890 nm LEDs, and the differences between

two LEDs having the following peak emission wavelengths (in nm): 660-880, 830-940,

830-950, 940-950, 950-880, 950-890.  The model with the highest adjusted R2, 0.35,

contained the following eight variables: absorbance from the 660 nm LED, ratio between

830 and 890 nm LEDs, and differences between two LEDs having the following peak

emission wavelengths (in nm): 660-880, 830-950, 830-950, 940-950.

The regression model comprising only the six LED absorbance values had an adjusted 

R2 of 0.40.  Dropping any one of the LED absorbance values resulted in large drop of the

model adjusted R2.  The highest adjusted R2 using only five LED absorbance values was

0.29.

Table 5.4.3.  Comparison of the three regression models used to classify nuts as
concealed damage or normal.

model adjusted R2
total

classification
error rate

 false
positive

error rate

false
negative
error rate

principle components 0.46 20.0% 9.1% 39.4%

LED absorbance, ratio and
difference values

0.35 22.9% 11.2% 43.8%

LED absorbance values 0.40 22.1% 10.7% 42.6%

Classifying nuts as concealed damaged or normal based on the predicted gray value by

principle component regression yields similar classification results obtained with the

discriminant analysis procedure.  The maximum adjusted R2 for the regression model was

0.46 on the validation set.  A scatter plot of the actual gray level versus the predicted gray

level from the validation set is shown in figure 5.4.1.  This was obtained using five 

principle components, two from the LED absorbance set and three from the ratio set.  The

total classification error rate was 20.0%.  Only 9.1% of the normal nuts were classified as
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concealed damaged.  Most of the errors  arose from classifying concealed damaged nuts

as normal with 39.4% of the concealed damaged nuts being incorrectly classified as

normal.  As with the discriminant analysis procedure, most of the classification errors

involve nuts with gray levels near 160, the division between normal and concealed

damage.  Of the concealed damaged nuts incorrectly classified as normal, 70% have a

mean gray level above 140 and have an image based concealed damage score of three. 

For normal nuts incorrectly classified as concealed damaged, 86% have a mean gray

level below 180 and have image based concealed damage scores of three.   Table 5.4.4

shows the fraction of nuts, from each image based concealed damage score, that are

classified as concealed damaged using the given gray level threshold.  Nuts with a

predicted gray level below the given gray level threshold are classified as concealed

damaged.  As can be seen from table 5.4.4, with a gray level threshold set at 160, all nuts

with an image based concealed damage score of one are classified as normal and all nuts

with a concealed damage score of five are classified as concealed damaged.  Only 2.0%

of the nuts with an image based concealed damage score of one or two are classified as

concealed damaged.  Only 11.8% of the nuts with an image based concealed damage

score of four or five are classified as normal.  If a gray level threshold of 150 is used to

classify nuts as concealed damaged or normal, then no nuts with an image based

concealed damage score of 1 or 2 are classified as concealed damaged.  However, 51% of

the nuts having image based concealed damage scores of four or five will be classified as

normal.

The classification errors from the two drying treatments used in this experiment are not

as equally divided as with the discriminant analysis procedure.  No errors were made in

classifying the control nuts.  None of the controls were concealed damaged.  Nuts from

the high temperature drying treatment comprise 58% percent of the classification errors,

while the remaining 42% of the classification errors were from the low temperature

drying treatment.  This may be due to the larger fraction of classification errors involving

concealed damaged nuts.
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Table 5.4.4.  Fraction of nuts classified as concealed damaged for various predicted gray
level thresholds.  Percentages based on predicted gray levels from the validation set.

image
based

concealed
damage

score

Predicted gray level threshold to classify nuts as concealed damage or normal

130 140 150 160 170 180 190

1 0.0% 0.0% 0.0% 0.0% 0.0% 25.0% 71.4%

2 0.0% 0.0% 0.0% 2.9% 28.2% 57.1% 89.9%

3 0.4% 2.3% 17.8% 31.0% 51.4% 75.3% 94.9%

4 9.6% 14.2% 49.4% 78.3% 90.2% 97.6% 100.0%

5 33.2% 54.5% 78.3% 100.0% 100.0% 100.0% 100.0%

These results are comparable to the results of the simulated LED experiment.  In the

simulated LED experiment, section 5.3h, the minimum total error rate was 15.7% but of

the nuts with image based concealed damage scores of 4 and 5, 20.6% were classified as

normal.  Of the nuts with image based concealed damage scores of 1 and 2, only 3.3%

were classified as concealed damaged.  This was obtained using simulated LEDs with

peak emission wavelengths of 700, 830, 880, 890, 940, and 950 nm.  There are two

important differences between these simulated LEDs and the actual ones used on the

prototype.  The first difference is that the simulated LED set used a 700 nm LED while

the prototype used a 660 nm LED.  The other important difference is that the simulated

LED experiment used emission spectra supplied by the manufacturer.  However, the

measured peak emission spectra of all LEDs, figure 4.4.2, differ somewhat from the

manufacturer specifications.  Table 5.4.5 shows the manufacturer specified and measured

peak emission wavelength. 

Finally, there is no known method to sort almonds with concealed damage so the sorting

results obtained through this study cannot be compared with other methods.  However,

the classification error rates are comparable to other nut sorting operations.  For example,

in sorting pistachio nuts for shell stains a false positive error rate of 1% and a false
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negative error rate of 10% was obtained (Pearson, 1996).  These error rates were an

improvement over what the industry was obtaining with automatic color sorters to

remove stained nuts.  The minimum false positive rate of 2.0% achieved with the

prototype sorter would not be acceptable if all almonds needed to be inspected by this

sorter.  Fortunately, only those batches of nuts that were exposed to rainfall during

harvest and show significant levels of concealed damage, through quality checks, need to

be inspected.  

Table 5.4.5.  Manufacturer specified and measured peak emission spectra of LED used
on the prototype.

manufacturer specified

peak emission

wavelength (nm)

measured peak

emission

wavelength (nm)

660 680

830 840

880 895

890 905

940 930

950 960
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Figure 5.4.1.  Graph of actual gray level versus predicted gray level from principle
component regression.
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6. CONCLUSION

Results from the field tests indicate that concealed damage can be reduced, but not

eliminated, if nuts are left in a scattered arrangement on the orchard floor during

exposure to moisture, such as rain.  From the simulated rainfall experiments on scattered

nuts and nuts in windrows, the incidence of concealed damage among scattered nuts was

less than 25% of the concealed damage incidence of nuts held in windrows.  For the same

amount of simulated rainfall, scattered nuts absorbed 29% less moisture than nuts held in

windrows over a five day period.  Nevertheless, 4% of the scattered nuts exposed to 1 cm

simulated rainfall and held in the orchard for five days contained concealed damage.

Results from the batch tests show that as almonds increase in moisture, sucrose will

break down into glucose and fructose.  The quantity of reducing sugars formed during

exposure to moisture does not appear to be different between the two moisture

treatments, long and short, used in this experiment.  This indicates that breakdown of

sucrose might be due to enzymatic activity.  However, this was not confirmed.  Also

during exposure to moisture, refractive index of extracted oil indicates that fatty acid

oxidation occurs.  

After high temperature, 110°C, drying, the reducing sugars mostly disappear, presumably

because they become bound to amino acids in the Maillard reaction.  Only about two

thirds of the reducing sugars disappear during low temperature, 55°C, drying.  The

refractive index of extracted oil after drying does not indicate that more oil oxidation

occurs during drying.  However, the refractive index after moisture exposure and drying

compared with the refractive index of the control still indicates some oil oxidation

occurred during moisture exposure.  A significant (α # 0.05) decrease in mean C.I.E. L*

value after drying was observed for nuts dried at 110°C but not at 55°C .  A reduction in

water soluble solids was observed after nuts were dried.  A correlation of -0.87 between

water soluble solids measured after drying and the C.I.E. a* chromaticity after cooking

was seen.  The oxidation of oil and formation of reducing sugars followed by a reduction
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of soluble solids, presumably due to protein folding, and slight color changes well before

browning occurs are all characteristic of the Maillard reaction proceeding through the

first and intermediate stages.

Use of a lower temperature drying treatment can significantly reduce the incidence of

concealed damage.  For the long moisture treated nuts dried at 110°C, 1.28% of the nuts

had no browning and 44.44% had severe browning due to concealed damage.  In contrast,

30.86% of the long moisture treated nuts dried at 55°C had no browning and only 1.23%

had severe browning due to concealed damage.  Similar results were obtained for the

short moisture treated nuts.  Storage of almond kernels at, with initial moisture content at

6% d.b., for seven months at 10°C and 45% relative humidity did not appear to effect the

incidence or severity of concealed damage.

All of the physical properties measured on individual nuts (mass, thickness, volume,

presence of mold, wet appearance after moisture exposure, or if the nut was a double

kernel), had very low correlations with post-cook color or concealed damage score.  The

mass loss during cooking had the highest correlation, at -0.34, with concealed damage

score.  

Comparing post-dry transmission spectra of concealed damaged and normal almonds, it

was observed that nuts with concealed damage have less absorbance in the oil absorption

band at 930 nm and increased absorbance in the region between 700 and 750 nm.  These

spectral features were used to predict, before cooking, if the nuts would develop

concealed damage after cooking.  The difference between absorbance spectra obtained

before moisture treatment and after drying of individual nuts indicate that the changes in

the absorbance occurs sometime during moisture treatment and/or drying. 

Several methods were used to distinguish concealed damaged from normal almonds

based on the transmission spectra obtained after drying.  The lowest classification error

rate on the validation set, 12.4%, was obtained by discriminant analysis using principle
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components of the absorbance, first derivative and second derivative spectra between

1000 and 1300 nm. The lowest classification error rate on the validation set, 15.0%, using

spectra between 700 and 1000 nm was also obtained by discriminant analysis using

principle components of the absorbance, first derivative and second derivative spectra.  

Spectra obtained from the manufacturer of eight different infrared LEDs were multiplied

and integrated with the transmission absorbance spectra of each individual almond.  It

was found that using principle components of the integration from six different simulated

LEDs and principle components from all possible ratios of these six simulated LED

integrations could classify almonds as concealed damaged or normal with an error rate of

17.7% on a validation set.  

A prototype to automatically detect almonds with concealed damage was built that could

operate at commercial speeds, about 40 nuts per second.  The automated inspection

device detected transmitted light through whole almonds from six different near infrared

LEDs.  Each LED was modulated at a different frequency so that the light from all LEDs

was transmitted through the almond at the same time.  The demodulation of the signal

from the photodiode was performed by a digital signal processor in real-time by

computing a discrete Fourier transform at the six modulating frequencies.  Multiple linear

regression and discriminant analysis to classify nuts as concealed damaged or normal was

performed on principle components of all normalized LED absorbance values, all

possible ratios of two normalized absorbance values, and all possible differences in two

normalized absorbance values.  A classification error rate of 20.4% on the validation set

was obtained with three principle components selected in a stepwise discriminant

analysis procedure.  A classification error rate of 20.0% was obtained with seven

variables selected in a stepwise regression analysis procedure.  Most of the incorrectly

classified nuts were on the border between actually being considered concealed damaged

or normal.  For the regression procedure, only 2.0% of the almond samples showing little

or no browning were classified as concealed damaged.  Also, 11.8% of almond samples
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with severe concealed damage were classified as normal.  Similar results were obtained

with the discriminant analysis procedure.

There are two recommendations for further research.  Through this study, it has been

shown that promising sorting results might be obtained with the modulated LED design. 

However, more research is needed to determine the optimal set of LEDs to use for a

commercial sorter.  Several other LEDs are available but were not used in this study due

to time limitations.  Furthermore, the sorting machine needs more thorough testing and

the issue of different nut storage conditions, storage duration, and nuts from different

growing conditions need to be addressed.  The second recommendation for further

research, on a more fundamental level, would be to perform a more in depth study on the

NIR spectral properties of almond oil.  In this study, it was observed that almonds with

concealed damage show reduced absorbance at 930 nm.  This spectral feature was used to

help predict if the nut would become concealed damaged after cooking.  It was

hypothesized that the reason for the reduced absorbance at 930 nm was due to oil

oxidation.  This was supported by oil refractive index measurements.  However, more

research is required to confirm this hypotheses.
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APPENDIX A

/* cd_parse_cd.c  Tom Pearson   Jan 14, 1997

Reads a data file generated by Control Development spectrometer.  Strips data

above 1500nm.  Puts remaining data in array with the top row being the wave-

length and the subsequent rows being the spectra from one sample. First two

columns contain the treatment code and sample number provided that the sample

number starts at element 6 of the spectrum filename and the treatment code is

element 4.

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

main()

{

int i, j, sample, dummywave;

float specdata[100][1300], wave[1300];

char outfile[25], newline, tab, comma, space, treatment;

FILE *finSSM, *finCD, *fout;

printf("\n  output data file to store data: ");

scanf("%s",outfile);

fout = fopen(outfile,"w");

/************************* TREATMENT A DATA *************************/

finSSM = fopen("/home/tpearson/almond/post_dry_spectra/dry_a_ssm_data", "r");

if(finSSM == NULL)

     {

printf("\n\n ***** file not found (SSM)*****\n\n");

exit(-1);



129

}

finCD = fopen("/home/tpearson/almond/post_dry_spectra/dry_a_cd_data", "r");

if(finCD == NULL)

     {

printf("\n\n ***** file not found (CD) *****\n\n");

exit(-1);

}

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&wave[j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

fscanf(finSSM,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finSSM,"%s",&treatment);

fscanf(finSSM,"%c",&space);

fscanf(finSSM,"%d",&sample);

fscanf(finSSM,"%c",&space);

printf("treatment = %c, sample = %d  SSM DATA\n",treatment, sample);

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&specdata[sample][j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

}

fclose(finSSM);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%d",&dummywave);

wave[j] = dummywave * 1.0;

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}
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fscanf(finCD,"%c",&newline);

fscanf(finCD,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finCD,"%s",&treatment);

fscanf(finCD,"%c",&space);

fscanf(finCD,"%d",&sample);

fscanf(finCD,"%c",&space);

printf("treatment = %c, sample = %d  CD DATA\n",treatment, sample);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%f",&specdata[sample][j]);

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

}

fclose(finCD);

/*********** STORE DATA *******************/

for(j=1; j<=1264; j++)

{

fprintf(fout, "%4.1f, ",wave[j]);

}

fprintf(fout, "\n");

for(i=1; i<=81; i++)

{

fprintf(fout, "\n%c  %d ", treatment, i);

for(j=1; j<=1264; j++)

{

fprintf(fout, "%4.1f, ",specdata[i][j]);

}

}

fprintf(fout, "\n");
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/************************* TREATMENT B DATA *************************/

finSSM = fopen("/home/tpearson/almond/post_dry_spectra/dry_b_ssm_data", "r");

if(finSSM == NULL)

     {

printf("\n\n ***** file not found (SSM)*****\n\n");

exit(-1);

}

finCD = fopen("/home/tpearson/almond/post_dry_spectra/dry_b_cd_data", "r");

if(finCD == NULL)

     {

printf("\n\n ***** file not found (CD) *****\n\n");

exit(-1);

}

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&wave[j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

fscanf(finSSM,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finSSM,"%s",&treatment);

fscanf(finSSM,"%c",&space);

fscanf(finSSM,"%d",&sample);

fscanf(finSSM,"%c",&space);

printf("treatment = %c, sample = %d  SSM DATA\n",treatment, sample);

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&specdata[sample][j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

}

fclose(finSSM);
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for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%d",&dummywave);

wave[j] = dummywave * 1.0;

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

fscanf(finCD,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finCD,"%s",&treatment);

fscanf(finCD,"%c",&space);

fscanf(finCD,"%d",&sample);

fscanf(finCD,"%c",&space);

printf("treatment = %c, sample = %d  CD DATA\n",treatment, sample);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%f",&specdata[sample][j]);

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

}

fclose(finCD);

/*********** STORE DATA *******************/

for(i=1; i<=81; i++)

{

fprintf(fout, "\n%c  %d ", treatment, i);

for(j=1; j<=1264; j++)

{

fprintf(fout, "%4.1f, ",specdata[i][j]);

}

}

fprintf(fout, "\n");
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/************************* TREATMENT C DATA *************************/

finSSM = fopen("/home/tpearson/almond/post_dry_spectra/dry_c_ssm_data", "r");

if(finSSM == NULL)

     {

printf("\n\n ***** file not found (SSM)*****\n\n");

exit(-1);

}

finCD = fopen("/home/tpearson/almond/post_dry_spectra/dry_c_cd_data", "r");

if(finCD == NULL)

     {

printf("\n\n ***** file not found (CD) *****\n\n");

exit(-1);

}

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&wave[j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

fscanf(finSSM,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finSSM,"%s",&treatment);

fscanf(finSSM,"%c",&space);

fscanf(finSSM,"%d",&sample);

fscanf(finSSM,"%c",&space);

printf("treatment = %c, sample = %d  SSM DATA\n",treatment, sample);

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&specdata[sample][j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

}

fclose(finSSM);
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for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%d",&dummywave);

wave[j] = dummywave * 1.0;

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

fscanf(finCD,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finCD,"%s",&treatment);

fscanf(finCD,"%c",&space);

fscanf(finCD,"%d",&sample);

fscanf(finCD,"%c",&space);

printf("treatment = %c, sample = %d  CD DATA\n",treatment, sample);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%f",&specdata[sample][j]);

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

}

fclose(finCD);

/*********** STORE DATA *******************/

for(i=1; i<=81; i++)

{

fprintf(fout, "\n%c  %d ", treatment, i);

for(j=1; j<=1264; j++)

{

fprintf(fout, "%4.1f, ",specdata[i][j]);

}

}
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fprintf(fout, "\n");

/************************* TREATMENT D DATA *************************/

finSSM = fopen("/home/tpearson/almond/post_dry_spectra/dry_d_ssm_data", "r");

if(finSSM == NULL)

     {

printf("\n\n ***** file not found (SSM)*****\n\n");

exit(-1);

}

finCD = fopen("/home/tpearson/almond/post_dry_spectra/dry_d_cd_data", "r");

if(finCD == NULL)

     {

printf("\n\n ***** file not found (CD) *****\n\n");

exit(-1);

}

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&wave[j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

fscanf(finSSM,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finSSM,"%s",&treatment);

fscanf(finSSM,"%c",&space);

fscanf(finSSM,"%d",&sample);

fscanf(finSSM,"%c",&space);

printf("treatment = %c, sample = %d  SSM DATA\n",treatment, sample);

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&specdata[sample][j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

}
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fclose(finSSM);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%d",&dummywave);

wave[j] = dummywave * 1.0;

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

fscanf(finCD,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finCD,"%s",&treatment);

fscanf(finCD,"%c",&space);

fscanf(finCD,"%d",&sample);

fscanf(finCD,"%c",&space);

printf("treatment = %c, sample = %d  CD DATA\n",treatment, sample);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%f",&specdata[sample][j]);

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

}

fclose(finCD);

/*********** STORE DATA *******************/

for(i=1; i<=81; i++)

{

fprintf(fout, "\n%c  %d ", treatment, i);

for(j=1; j<=1264; j++)

{

fprintf(fout, "%4.1f, ",specdata[i][j]);

}
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}

fprintf(fout, "\n");

/************************* TREATMENT E DATA *************************/

finSSM = fopen("/home/tpearson/almond/post_dry_spectra/dry_e_ssm_data", "r");

if(finSSM == NULL)

     {

printf("\n\n ***** file not found (SSM)*****\n\n");

exit(-1);

}

finCD = fopen("/home/tpearson/almond/post_dry_spectra/dry_e_cd_data", "r");

if(finCD == NULL)

     {

printf("\n\n ***** file not found (CD) *****\n\n");

exit(-1);

}

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&wave[j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

fscanf(finSSM,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finSSM,"%s",&treatment);

fscanf(finSSM,"%c",&space);

fscanf(finSSM,"%d",&sample);

fscanf(finSSM,"%c",&space);

printf("treatment = %c, sample = %d  SSM DATA\n",treatment, sample);

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&specdata[sample][j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);
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}

}

fclose(finSSM);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%d",&dummywave);

wave[j] = dummywave * 1.0;

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

fscanf(finCD,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finCD,"%s",&treatment);

fscanf(finCD,"%c",&space);

fscanf(finCD,"%d",&sample);

fscanf(finCD,"%c",&space);

printf("treatment = %c, sample = %d  CD DATA\n",treatment, sample);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%f",&specdata[sample][j]);

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

}

fclose(finCD);

/*********** STORE DATA *******************/

for(i=1; i<=81; i++)

{

fprintf(fout, "\n%c  %d ", treatment, i);

for(j=1; j<=1264; j++)

{
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fprintf(fout, "%4.1f, ",specdata[i][j]);

}

}

fprintf(fout, "\n");

/************************* TREATMENT F DATA *************************/

finSSM = fopen("/home/tpearson/almond/post_dry_spectra/dry_f_ssm_data", "r");

if(finSSM == NULL)

     {

printf("\n\n ***** file not found (SSM)*****\n\n");

exit(-1);

}

finCD = fopen("/home/tpearson/almond/post_dry_spectra/dry_f_cd_data", "r");

if(finCD == NULL)

     {

printf("\n\n ***** file not found (CD) *****\n\n");

exit(-1);

}

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&wave[j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

fscanf(finSSM,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finSSM,"%s",&treatment);

fscanf(finSSM,"%c",&space);

fscanf(finSSM,"%d",&sample);

fscanf(finSSM,"%c",&space);

printf("treatment = %c, sample = %d  SSM DATA\n",treatment, sample);

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&specdata[sample][j]);
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fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

}

fclose(finSSM);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%d",&dummywave);

wave[j] = dummywave * 1.0;

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

fscanf(finCD,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finCD,"%s",&treatment);

fscanf(finCD,"%c",&space);

fscanf(finCD,"%d",&sample);

fscanf(finCD,"%c",&space);

printf("treatment = %c, sample = %d  CD DATA\n",treatment, sample);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%f",&specdata[sample][j]);

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

}

fclose(finCD);

/*********** STORE DATA *******************/

for(i=1; i<=81; i++)

{

fprintf(fout, "\n%c  %d ", treatment, i);
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for(j=1; j<=1264; j++)

{

fprintf(fout, "%4.1f, ",specdata[i][j]);

}

}

fprintf(fout, "\n");

/************************* TREATMENT G DATA *************************/

finSSM = fopen("/home/tpearson/almond/post_dry_spectra/dry_g_ssm_data", "r");

if(finSSM == NULL)

     {

printf("\n\n ***** file not found (SSM)*****\n\n");

exit(-1);

}

finCD = fopen("/home/tpearson/almond/post_dry_spectra/dry_g_cd_data", "r");

if(finCD == NULL)

     {

printf("\n\n ***** file not found (CD) *****\n\n");

exit(-1);

}

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&wave[j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

fscanf(finSSM,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finSSM,"%s",&treatment);

fscanf(finSSM,"%c",&space);

fscanf(finSSM,"%d",&sample);

fscanf(finSSM,"%c",&space);

printf("treatment = %c, sample = %d  SSM DATA\n",treatment, sample);

for(j=1; j<=664; j++)  
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{

fscanf(finSSM,"%f",&specdata[sample][j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

}

fclose(finSSM);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%d",&dummywave);

wave[j] = dummywave * 1.0;

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

fscanf(finCD,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finCD,"%s",&treatment);

fscanf(finCD,"%c",&space);

fscanf(finCD,"%d",&sample);

fscanf(finCD,"%c",&space);

printf("treatment = %c, sample = %d  CD DATA\n",treatment, sample);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%f",&specdata[sample][j]);

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

}

fclose(finCD);

/*********** STORE DATA *******************/

for(i=1; i<=81; i++)
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{

fprintf(fout, "\n%c  %d ", treatment, i);

for(j=1; j<=1264; j++)

{

fprintf(fout, "%4.1f, ",specdata[i][j]);

}

}

fprintf(fout, "\n");

/************************* TREATMENT H DATA *************************/

finSSM = fopen("/home/tpearson/almond/post_dry_spectra/dry_h_ssm_data", "r");

if(finSSM == NULL)

     {

printf("\n\n ***** file not found (SSM)*****\n\n");

exit(-1);

}

finCD = fopen("/home/tpearson/almond/post_dry_spectra/dry_h_cd_data", "r");

if(finCD == NULL)

     {

printf("\n\n ***** file not found (CD) *****\n\n");

exit(-1);

}

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&wave[j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

fscanf(finSSM,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finSSM,"%s",&treatment);

fscanf(finSSM,"%c",&space);

fscanf(finSSM,"%d",&sample);

fscanf(finSSM,"%c",&space);
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printf("treatment = %c, sample = %d  SSM DATA\n",treatment, sample);

for(j=1; j<=664; j++)  

{

fscanf(finSSM,"%f",&specdata[sample][j]);

fscanf(finSSM,"%c",&comma);

fscanf(finSSM,"%c",&space);

}

}

fclose(finSSM);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%d",&dummywave);

wave[j] = dummywave * 1.0;

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

fscanf(finCD,"%c",&newline);

sample = 1;

for(i=1; i<=81; i++)

{

fscanf(finCD,"%s",&treatment);

fscanf(finCD,"%c",&space);

fscanf(finCD,"%d",&sample);

fscanf(finCD,"%c",&space);

printf("treatment = %c, sample = %d  CD DATA\n",treatment, sample);

for(j=665; j<=1264; j++)  

{

fscanf(finCD,"%f",&specdata[sample][j]);

fscanf(finCD,"%c",&comma);

fscanf(finCD,"%c",&space);

}

fscanf(finCD,"%c",&newline);

}

fclose(finCD);
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/*********** STORE DATA *******************/

for(i=1; i<=81; i++)

{

fprintf(fout, "\n%c  %d ", treatment, i);

for(j=1; j<=1264; j++)

{

fprintf(fout, "%4.1f, ",specdata[i][j]);

}

}

fprintf(fout, "\n");

fclose (fout);

printf("\n\ndata from %4.1f to %4.1f stored\n\n",wave[1], wave[1264]);

} /* end of main */
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APPENDIX B

/*  parse_ssm.c  Tom Pearson   Jan 14, 1997

Reads a SSM data file generated by Ocean Optics spectrometer.  Strips data

below 690nm and above 1000nm.  Puts remaning data in array with the top row 

being the wave-length and the subsequent rows being the spectra from one sample.

The first two columns are the treatment code and sample number provided that the

treatment code is fourth element of the spectrum filename and the sample number

starts with the fith element.

*/

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

main()

{

int i, j, filecount, sample_number[1000], sample;

float specdata[100][1100], wave[1090], dummy;

char outfile[25], infile[25], filelist[25], comma, treatment[1000];

char sample_char_1, sample_char_10;

FILE *fin, *fout, *flist;

printf("\n list of data files to parse: ");

scanf("%s",filelist);

flist = fopen(filelist,"r");

filecount = 81;

for(i=1; i<=filecount; i++)

{

fscanf(flist, "%s", infile);
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        fin = fopen(infile, "r");

                if(fin == NULL)

                {

                printf("\n\n ***** file not found *****\n\n");

                exit(-1);

                }

treatment[i] = infile[4];

sample_number[i] = atoi(&infile[5]);

sample = sample_number[i];

for(j=0; j<=1040; j++)   /* read data from input file */

{

fscanf(fin,"%f",&wave[j]);

fscanf(fin,"%c",&comma);

fscanf(fin,"%f",&specdata[sample][j]);

fscanf(fin,"%c",&comma);

fscanf(fin,"%f",&dummy);   /* wavelength below 400nm */

fscanf(fin,"%c",&comma);

fscanf(fin,"%f",&dummy);   /* spectra below 400nm */

}

fclose(fin);

}

printf("\n  output data file to store data: ");

scanf("%s",outfile);

fout = fopen(outfile,"w");

for(j=374; j<=1037; j++)

{

fprintf(fout, "%4.1f, ",wave[j]);

}

fprintf(fout, "\n");

for(i=1; i<=filecount; i++)
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{

fprintf(fout, "\n%c  %d ", treatment[i], i);

for(j=374; j<=1037; j++)

{

fprintf(fout, "%4.1f, ",specdata[i][j]);

}

}

fprintf(fout, "\n");

fclose (fout);

for(j=374; j<=1037; j++)

{

printf("%4.1f, ",wave[j]);

}

printf("\n");

for(i=1; i<=filecount; i++)

{

printf("\n%c  %d ", treatment[i], i);

for(j=374; j<=1037; j++)

{

printf("%4.1f, ",specdata[i][j]);

}

}

printf("\n");

printf("\n\ndata from %4.1f to %4.1f stored\n\n",wave[374], wave[1037]);

} /* end of main */

APPENDIX C

/*********************************************************************** 

tom pearson 

raw2jcmp.cpp 
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May 1, 1997 

 

this program read a data file of spectra parameters, chemical data 

then a spectrum for as many samples as specified in variable filecount. 

the data is deliminated by a ", " that is a comma and space.  There is 

a newline at the end of each sample.  The sample information variables 

come before the spectra data.  This particular program reads 701 data 

points in the spectra portion of the data file,  This can be changed 

by adjusting the j parameter in the for loops.  The program outputs the 

data in JCAMP-DX format for reading in software packages. 

****************************************************************************/ 

 

 

 

#include<stdio.h> 

#include <stdlib.h> 

#include <math.h> 

void main() 

{ 

 

int i,j,k, filecount, cd_score, sample, im_score; 

float data[720], dummy, mean, pix, volume; 

FILE *fout, *fin; 

char comma, space, treatment, newline; 

 

filecount = 648;  

/* filecount = 12;  */

 

 fin = fopen("/home/tpearson/almond/test", "r"); 

if(fin == NULL) 

{ 

printf("\n\n*****input file not found ******\n\n"); 

exit(-1); 

} 

 

 fout = fopen("/home/tpearson/almond/specdata.dx", "w"); 

if(fin == NULL) 
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{ 

printf("\n\n*****output file open not succesful******\n\n"); 

exit(-1); 

} 

 

fprintf(fout, "##TITLE= ALMOND TRANSMISION DATA\n"); 

fprintf(fout, "##JCAMP-DX= 4.24\n"); 

fprintf(fout, "##DATA TYPE= LINK\n"); 

fprintf(fout, "##BLOCKS= %d\n",filecount); 

 

/***** read data, one spectrum at a time ****/ 

 

 

for(i=1; i<=filecount; i++) 

{ 

fscanf(fin,"%c", &treatment); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%d", &sample); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

for(k=1; k<=7; k++) 

{ 

fscanf(fin,"%f", &dummy); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

} 

fscanf(fin,"%d", &cd_score); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

fscanf(fin,"%d", &im_score); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space);
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fscanf(fin,"%f", &volume); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space);

fscanf(fin,"%f", &mean); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space);

fscanf(fin,"%f", &pix); 

 

for(j=1; j<=700; j++) 

{ 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

fscanf(fin,"%f", &data[j]); 

} 

fscanf(fin, "%c", &newline); 

 

 

 

/*** write data, one spectrum at a time  ***/ 

 

fprintf(fout, "##TITLE= %c %d\n",treatment,sample); 

fprintf(fout, "##JCAMP-DX= 4.24\n"); 

fprintf(fout, "##DATA TYPE= NIR ABSORBANCE SPECTRUM \n"); 

fprintf(fout, "##ORIGIN= USDA-ARS-WRRC\n"); 

fprintf(fout, "##OWNER= TOM PEARSON\n"); 

fprintf(fout, "##CONCENTRATIONS=\t(Name,\t\tConcentration,\tUnits)\n");

fprintf(fout, "\t\t\t(CD_SCORE  ,\t%d,\tn.a.)\n", cd_score); 

fprintf(fout, "\t\t\t(IM_SCORE  ,\t%d,\tn.a.)\n", im_score);

fprintf(fout, "\t\t\t(PIXELS    ,\t%3.2f,\tn.a.)\n", mean);

fprintf(fout, "##SAMPLING PROCEDURE=\n"); 

fprintf(fout, "\tdetector mode = transmittance\n"); 

fprintf(fout, "##DATA PROCESSING=\n"); 

fprintf(fout, "\tmath treatment= 19 pnt 2nd order S-G smoothing\n"); 

fprintf(fout, "##XUNITS= NANOMETERS\n"); 

fprintf(fout, "##YUNITS= ABSORBANCE\n"); 
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fprintf(fout, "##XFACTOR= 1.0\n"); 

fprintf(fout, "##YFACTOR= 1.0\n"); 

fprintf(fout, "##FIRSTX= 701\n"); 

fprintf(fout, "##LASTX=1400\n"); 

fprintf(fout, "##NPOINTS= 700\n"); 

fprintf(fout, "##FIRSTY= %f\n",data[1]); 

fprintf(fout, "##DELTAX= 1.0\n"); 

fprintf(fout, "##XYDATA= (X++(Y..Y))\n"); 

 

for(j=1; j<=700; j=j+7) 

{ 

fprintf(fout,"%d",j+700); 

for(k=0; k<=6; k++) 

{ 

fprintf(fout," %f",data[j+k]); 

} 

fprintf(fout,"\n"); 

} 

fprintf(fout, "##END=\n\n"); 

} /** end of filecount loop **/ 

fclose(fin); 

fclose(fout); 

} /** end of main **/

APPENDIX D

/*  spec_calc.c  Tom Pearson   April 22, 1997

peforms 19 point Savitzky - Golay filter

reads reference spectrum and computes absorbances

normalizes spectra with area

interpolates Ocean Optics data at 1 nm intervals

includes routine to compute mean at each wavelength for each concealed damage score

*/
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#include <stdio.h>

#include <stdlib.h>

#include <math.h>

main()

{

int i, j, k, w, sample, dummywave, count, filecount,  cd_score[700];

int score_count[6], score, df[6][1270];

float sum_y, sum_xy, sum_xxy, a0[1270], a1[1270], a2[1270], x;

float score_sum[6][1270], score_mean[6][1270], score_sum2[6][1270];

float volume[650], specdata[650][1270], wave[1270], hue[700], n,;

float initial_mass[700], post_dry_mass[700], post_cook_mass[700], post_dry_thickness[700];

float color_L[650], color_a[650], color_b[650], delta_x, dummy_data[1270],reference[650][1270];

char outfile[25], newline, tab, comma, space, treatment[700],chardummy;

double double_ratio, score_var[6][1270];

float areaCD, areaSSM;

FILE *finSPEC, *fout, *finDATA;

filecount = 648;  /** there are 648 total spectrum samples  ***/

/************************* READ SPECTRA DATA FROM HARD DISK *************************/

finSPEC = fopen("/home/tpearson/almond/post_dry_spectra/all_spec_data", "r");

if(finSPEC == NULL)

     {

printf("\n\n ***** file not found (SPEC)*****\n\n");

exit(-1);

}

for(j=1; j<=1264; j++)  

{

fscanf(finSPEC,"%f",&wave[j]);

fscanf(finSPEC,"%c",&comma);

fscanf(finSPEC,"%c",&space);

}
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for(j=665; j<=1264; j++)  

{

wave[j] = wave[j] + 20;

}

fscanf(finSPEC,"%c",&newline);

treatment[0] = 'x';

for(i=1; i<=filecount; i++)

{

fscanf(finSPEC,"%s",&chardummy);

treatment[i] = chardummy;

if(chardummy != treatment[i-1]) 

{

printf("\nREADING TREATMENT %c SPECTRA",chardummy);

}

fscanf(finSPEC,"%c",&space);

fscanf(finSPEC,"%d",&sample);

fscanf(finSPEC,"%c",&space);

for(j=1; j<=1264; j++)  

{

fscanf(finSPEC,"%f",&specdata[i][j]);

fscanf(finSPEC,"%c",&comma);

fscanf(finSPEC,"%c",&space);

}

}

fclose(finSPEC);

/************** INPUT PROPERTY DATA FROM HARD DISK  ***********************/

finDATA = fopen("/home/tpearson/almond/post_dry_spectra/ind_prop_data.txt", "r");

if(finSPEC == NULL)

     {

printf("\n\n ***** file not found (DATA)*****\n\n");

exit(-1);
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}

printf("\n\nREADING PHYSICAL PROPERTY DATA\n\n");

for(i=1; i<=filecount; i++)

{

fscanf(finSPEC,"%s",&chardummy);

fscanf(finSPEC,"%c",&tab);

fscanf(finSPEC,"%d",&sample);

fscanf(finSPEC,"%c",&tab);

fscanf(finSPEC,"%f",&initial_mass[i]);

fscanf(finSPEC,"%c",&tab);

fscanf(finSPEC,"%f",&post_dry_mass[i]);

fscanf(finSPEC,"%c",&tab);

fscanf(finSPEC,"%f",&post_cook_mass[i]);

fscanf(finSPEC,"%c",&tab);

fscanf(finSPEC,"%f",&post_dry_thickness[i]);

fscanf(finSPEC,"%c",&tab);

fscanf(finSPEC,"%f",&color_L[i]);

fscanf(finSPEC,"%c",&tab);

fscanf(finSPEC,"%f",&color_a[i]);

fscanf(finSPEC,"%c",&tab);

fscanf(finSPEC,"%f",&color_b[i]);

fscanf(finSPEC,"%c",&tab);

fscanf(finSPEC,"%d",&cd_score[i]);

fscanf(finSPEC,"%c",&tab);

fscanf(finSPEC,"%f",&volume[i]);

fscanf(finSPEC,"%c",&newline);

hue[i] = atan(color_b[i]/color_a[i]);

}

fclose(finDATA);

/********************* READ REFERENCE SPECTRA ***************************/

finDATA = fopen("/home/tpearson/almond/post_dry_spectra/reference.csv", "r");

if(finDATA == NULL)

     {

printf("\n\n ***** file not found (REFERENCE)*****\n\n");
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exit(-1);

}

printf("\n\nREADING REFERENCE SPECTRUM\n\n");

for(i=1; i<=filecount; i++)

{

for(j=1; j<=1264; j++)

{

fscanf(finSPEC,"%f",&reference[i][j]);

fscanf(finSPEC,"%c",&newline);

}

}

fclose(finDATA);

/*********************** DATA CALCULATIONS **********************************/

/********************** compute absorbance with reference spctrum *********************/

for(j=1; j<=1264; j++)  

{

if(reference[j] < 1.0) reference[j] = 1.0;

reference[j] = reference[j]*10.0;

}

printf("\nCOMPUTING ABSORBANCES\n");

for(i=1; i<=filecount; i++)

{

for(j=1; j<=1264; j++)  

{

if(specdata[i][j] < 1.0) specdata[i][j] = 1.0;

 = fabs(reference[j]/specdata[i][j]);

specdata[i][j] = log(double_ratio);

}

}
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/******** Normalize intensity (or absorbance) values with spectrum area  ***********/

printf("\nNORMALIZING DATA\n");

for(i=1; i<=filecount; i++)

{

areaSSM = 0.0;

areaCD = 0.0;

wave[0] = 690.0;

for(j=1; j<=664; j++)  

{

areaSSM = areaSSM + fabs((wave[j]-wave[j-1])*specdata[i][j]);

}

areaSSM = areaSSM/309.2;  

for(j=1; j<=664; j++)  

{

specdata[i][j] = specdata[i][j]/areaSSM;

}

for(j=666; j<=1264; j++)  

{

areaCD = areaCD + fabs((wave[j]-wave[j-1])*specdata[i][j]);

}

areaCD = areaCD/600.0;   

for(j=665; j<=1264; j++)  

{

specdata[i][j] = specdata[i][j]/areaCD;

}

}

/**** perform Savitzki - Golay polynomial fit using 19 points, and 2nd order on SSM data only*****/

printf("\nPERFORMING SAVITZKI - GOLAY SMOOTHING AND INTERPOLATION\n");

for(i=1; i<=filecount; i++)
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{

for(j=10; j<=655; j=j++)  

{

sum_y = 0.0;

sum_xy = 0.0;

sum_xxy = 0.0;

for(k=j-9; k<=j+9; k=k++)  

{

sum_y = sum_y + specdata[i][k];

sum_xy = sum_xy + (k-j)*specdata[i][k];

sum_xxy = sum_xxy + (k-j)*(k-j)*specdata[i][k];

a2[j] = (sum_xxy - 30.0*sum_y)/13566.0;

a1[j] = sum_xy/570.0;

a0[j] = (sum_y - 570.0*a2[j])/19.0;

}

}

for(w=700; w<=975; w=w++)  

{

j = 1;

while (wave[j] <= w*1.0) j=j+1;

x = (w*1.0 - wave[j-1])/(wave[j] - wave[j-1]);

specdata[i][w-699] = a0[j] + a1[j]*x +a2[j]*x*x;

}

}

for(i=1; i<=filecount; i++)

{

for(j=740; j<=1165; j=j++)  

{

specdata[i][j-464] = specdata[i][j];

}

}

/******************************* compute spectra means for each cd_score  ***********/
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printf("\nCOMPUTING SCORE MEANS AT EACH WAVELEGNTH DATAPOINT\n");

for(k=1; k<=5; k++) 

{

for(j=1; j<=701; j++) 

{

score_sum[k][j] = 0.0;

score_sum2[k][j] = 0.0;

}

score_count[k] = 0;

}

for(i=1; i<=filecount; i++)

{

score = cd_score[i];

score_count[score] = score_count[score] + 1;

for(j=1; j<=701; j++) 

{

score_sum[score][j] = specdata[i][j] + score_sum[score][j];

score_sum2[score][j] = specdata[i][j]*specdata[i][j] + score_sum2[score][j];

}

}

for(k=1; k<=5; k++) 

{

for(j=1; j<=701; j++) 

{

n = score_count[k] * 1.0;

score_mean[k][j] = score_sum[k][j]/n;

score_var[k][j] = (n*score_sum2[k][j] -

score_mean[k][j]*score_mean[k][j])/(n*(n-1));

}

}

/*********** STORE DATA *******************/

printf("\n  output data file to store data: ");
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scanf("%s",outfile);

fout = fopen(outfile,"w");

count = 1;

for(i=1; i<=filecount; i++)

{

fprintf(fout, "\n%c, %d, %f, %f, ", treatment[i], count, initial_mass[i], post_dry_mass[i]);

fprintf(fout, "%f, %f, %f, %f, %f, %d", post_cook_mass[i], post_dry_thickness[i], color_L[i],

color_a[i], color_b[i], cd_score[i], volume[i]);

count = count + 1;

if(count > 81) 

{

count = 1;

printf("\nTREATMANT %c DATA STORED specdata[81][1264] = %f \n",

treatment[i-2],specdata[i][1264]);

}

for(j=1; j<=701; j=j++)

{

fprintf(fout, ", %f",specdata[i][j]);

}

}

fprintf(fout, "\n");

fclose(fout);

} /* end of main */
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APPENDIX E

/****************************************************************************** 

t_value.c 

Tom Pearson

April 18, 1997

Reads Savitzki - Golay smoothed data generated by spec_calc.c and stored in

file

“s_g_spec.csv.  Includes routine to compute second derivative by central

difference method.  Computes t_values for different means for nuts with an image

score of 1 and 5.

While computing t_values, unequal variances are assumed for the two groups.

******************************************************************************************/

#include<stdio.h> 

#include <stdlib.h> 

#include <math.h> 

void main() 

{ 

 

int i,j,k, filecount, cd_score[650], sample[650], image_score[650]; 

float data[650][720], gray_mean[650], thresh_pix[650], volume[650]; 

float initial_mass[650], dry_mass[650], cook_mass[650], thick[650];

float L_value[650], a_value[650], b_value[650]; 

float n1, n2, w1, w2, t_1[750], score_var[6][750], score_sum2[6][750];

FILE *fout, *fin; 

char comma, space, treatment[650], newline; 

int score, score_count[6];

float score_mean[6][720], n, df, dummy, derv2_spec[650][720];

 

 

filecount = 648; 

 

 fin = fopen("/home/tpearson/almond/s_g_spec.csv", "r"); 
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if(fin == NULL) 

{ 

printf("\n\n*****spectra file not found ******\n\n"); 

exit(-1); 

} 

 

 

 fout = fopen("/home/tpearson/almond/Dtvalues.csv", "w"); 

if(fout == NULL) 

{ 

printf("\n\n*****output file open not succesful******\n\n"); 

exit(-1); 

} 

 for(i=1; i<=filecount; i++)

{

 

/** read physical property data and spectra **/ 

 

fscanf(fin,"%c", &treatment[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%d", &sample[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%f", &initial_mass[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%f", &dry_mass[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%f", &cook_mass[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 
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fscanf(fin,"%f", &thick[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%f", &L_value[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%f", &a_value[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%f", &b_value[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%d", &cd_score[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space);

 

fscanf(fin,"%d", &image_score[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%f", &volume[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

fscanf(fin,"%f", &gray_mean[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%f", &thresh_pix[i]); 

for(j=1; j<=700; j++) 

{ 
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fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

fscanf(fin,"%f", &data[i][j]); 

}  

fscanf(fin, "%c", &newline);

} /** end of filecount loop **/ 

/******* compute second derivitive *************/

printf("\nCOMPUTING DERIVATIVES\n");

for(i=1; i<=filecount; i++)

{

for(j=11; j<=690; j++)  

{

derv2_spec[i][j] = (data[i][j+10] - (2.0*data[i][j]) + data[i][j-10])/(100);

}

}

for(i=1; i<=filecount; i++)

{

for(j=11; j<=690; j++)  

{

data[i][j] = derv2_spec[i][j];

}

}

  

/************* compute spectra means for each cd_score *********/

for(k=1; k<=5; k++) 

{

score_count[k] = 0;

for(j=1; j<=700; j=j+1) 

{ 

score_mean[k][j] = 0.0;

score_sum2[k][j] = 0.0;
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}

}

for(i=1; i<=filecount; i++) 

{

score = image_score[i];

score_count[score] = score_count[score] + 1;

for(j=1; j<=700; j=j+1) 

{ 

score_mean[score][j] = score_mean[score][j] + data[i][j];

score_sum2[score][j] = data[i][j]*data[i][j] + score_sum2[score][j];

}

}

for(k=1; k<=5; k++) 

{

for(j=1; j<=700; j=j+1) 

{ 

n = score_count[k]*1.0;

score_mean[k][j] = score_mean[k][j]/n;

score_var[k][j] = (n*score_sum2[k][j] -

score_mean[k][j]*score_mean[k][j])/(n*(n-1));

}

}

/*************************** compute t values for unequal means *************************/

/** assume unequal variances so use t' = (Xbar1 - Xbar2)sqrt(var1/n1 + var2/n2)  **/

/** reference SAS Users Guide, vvol. 2, pg 1636  **/

printf("\nCOMPUTING T VALUES\n");

for(j=1; j<=700; j++) 

{

n1 = score_count[1]*1.0;

n2 = score_count[5]*1.0;
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w1 = score_var[1][j]/n1;

w2 = score_var[5][j]/n2;

t_1[j] = (score_mean[1][j] - score_mean[5][j])/sqrt(w1+w2);

}

/*** OUTPUT DATA  ***/ 

/*********** output t value data ***********/

for(j=1; j<=700; j=j+1) 

{

fprintf(fout, "%d, %f\n",j+700, t_1[j]);

}

/*********** output score mean data ***********/

/*

for(j=1; j<=700; j=j+1) 

{

fprintf(fout, "%d, %f, %f, %f, %f, %f\n",j+700,

score_mean[1][j],score_mean[2][j],score_mean[3][j],score_mean[4][j],score_mean[5][j]);

}

*/

/**************** OUTPUT ALL READ DATA *************/ 

/*

for(i=1; i<=filecount; i++) 

{

fprintf(fout, "%c, %d, %f, %f, ", treatment[i], sample[i], initial_mass[i], dry_mass[i]); 

fprintf(fout, "%1.4f, %1.4f, %2.4f, %2.4f, ", cook_mass[i], thick[i], L_value[i], a_value[i]); 

fprintf(fout, "%2.4f, %d, %d, ", b_value[i], cd_score[i], image_score[i]); 

fprintf(fout, "%f, %f, %f",volume[i], gray_mean[i], thresh_pix[i]); 

for(j=1; j<=700; j=j+1) 

{ 

fprintf(fout,", %f",data[i][j]); 

} 
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fprintf(fout,"\n");  

} 

 

fclose(fin); 

fclose(fout); 

} /** end of main **/
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APPENDIX F

/******** discrimD.c       Tom Pearson           May 15, 1997 ***************/

/****** computes best three variable dicriminate models comprised of absorbance areas**********/

/****** computes best three variable dicriminate models, the models can be any combination

of two variables desired, such as derivatives, ratios, etc.

The best three variable discriminant models are computed using

spectra from 700 nm to 970nm.  Computes discriminant functions for one group, 

labled 1, comprising only of nuts having a mean gray level greater than 160 (good nuts), 

and another discriminant function, labled 2, for nuts with a gray mean below 160 

(concealed damaged)  These functions are developed using odd numbered samples only. 

Classification is performed on the even numbered samples using the two discriminant

function.  A nut is classified into a group, either “1" or “2" based on having

a lower D^2 value.  Error is tracked by summing the absolute value of

the difference between the actual score and the classification score.

.

#include<stdio.h> 

#include <stdlib.h> 

#include <math.h> 

void main() 

{ 

 

int i,j,k, filecount, cd_score[650], sample[650], image_score[650]; 

float data[650][60], gray_mean[650];

float L_value[650], a_value[650], b_value[650]; 

FILE *fout, *fin; 

char comma, space, treatment[650], newline; 

int score, score_count[6];

float score_mean[6][60], derv[650][60];

int x, y, z, error, Dcd, Dg, class_score, countg, countcd;

int minx, miny, minz, min2x, min2y, min2z, minerr, min2err;

double g_cov_xx, g_cov_xy, g_cov_xz, g_cov_yy, g_cov_yz, g_cov_zz;

double total_df, cd_count, mag, Cg, Cgx, Cgy, Cgz, Ccd, Ccdx, Ccdy, Ccdz;
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double cd_cov_xx, cd_cov_xy, cd_cov_xz, cd_cov_yy, cd_cov_yz, cd_cov_zz, g_mean[60],

g_count;

double pcov_xx, pcov_xy, pcov_xz, pcov_yx, pcov_yy, pcov_yz, pcov_zx, pcov_zy, pcov_zz;

double inv_pcov_xx, inv_pcov_xy, inv_pcov_xz, inv_pcov_yx;

double inv_pcov_yy, inv_pcov_yz, inv_pcov_zx, inv_pcov_zy, inv_pcov_zz;

double g_mean_X, cd_mean_X, g_sum_X, cd_sum_X, X[650];

int X1, X2, min2_X1, min2_X2, min_X1, min_X2, damage[650]; 

double g_mean_Y, cd_mean_Y, g_sum_Y, cd_sum_Y, Y[650];

int Y1, Y2, min2_Y1, min2_Y2, min_Y1, min_Y2, area, width;

double g_mean_Z, cd_mean_Z, g_sum_Z, cd_sum_Z, Z[650];

int Z1, Z2, min2_Z1, min2_Z2, min_Z1, min_Z2, stop_X, stop_Y, stop_Z;

 

filecount = 648;

minerr = 1000;

min2err = 1000;

 

 fin = fopen("/home/tpearson/almond/spectra.csv", "r"); 

if(fin == NULL) 

{ 

printf("\n\n*****spectra file not found ******\n\n"); 

exit(-1); 

} 

 

 

 fout = fopen("/home/tpearson/almond/derv2_results", "w"); 

if(fout == NULL) 

{ 

printf("\n\n*****output file open not succesful******\n\n"); 

exit(-1); 

} 

 for(i=1; i<=filecount; i++)

{

 

/** read physical property data and spectra **/ 

 

fscanf(fin,"%c", &treatment[i]); 

fscanf(fin, "%c", &comma); 
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fscanf(fin, "%c", &space); 

 

fscanf(fin,"%d", &sample[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%d", &cd_score[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space);

 

fscanf(fin,"%d", &image_score[i]); 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

 

fscanf(fin,"%f", &gray_mean[i]); 

 

 

for(j=1; j<=54; j++) 

{ 

fscanf(fin, "%c", &comma); 

fscanf(fin, "%c", &space); 

fscanf(fin,"%f", &data[i][j]); 

}  

fscanf(fin, "%c", &newline);

} /** end of filecount loop **/ 

/************ assign scores based on gray level mean *********/

for(i=1; i<=filecount; i++) 

{

damage[i] = 1;

if (gray_mean[i] <= 160.0) damage[i] = 2;

}
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/********** find best three variable discriminant models *****/

for(X1=1; X1<=54; X1=X1+2)

{

stop_X = X1+10;

if(stop_X >= 54) stop_X = 54;

for(X2=X1+1; X2<=stop_X; X2=X2+1)

{

printf("X1 = %d  X2 = %d\n",X1, X2);

countg = 0;

countcd = 0;

cd_sum_X = 0.0;

g_sum_X = 0.0;

width = X2-X1;

for(i=1; i<=filecount; i++) 

{

X[i] = (data[i][X1-width]-2*data[i][X1]+data[i][X1+width])/(width*width);

}

for(i=1; i<=filecount; i=i+2) 

{

if ( damage[i] == 1 ) 

{

g_sum_X = g_sum_X + X[i];

countg = countg + 1;

}

if ( damage[i] == 5 ) 

{

cd_sum_X = cd_sum_X + X[i];

countcd = countcd + 1;

}

}

cd_count = countcd*1.0;
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g_count = countg*1.0;

g_mean_X = g_sum_X/g_count;

cd_mean_X = cd_sum_X/cd_count;

total_df = g_count+cd_count - 1.0;

 

for(Y1=3; Y1<=53; Y1=Y1+2)

{

stop_Y = Y1+10;

if(stop_Y >= 54) stop_Y = 54;

for(Y2=Y1+1; Y2<=stop_Y; Y2=Y2+1)

{

if(Y2==X2 && Y1 == X1) Y2=Y2+1;

cd_sum_Y = 0.0;

g_sum_Y = 0.0;

width = Y2-Y1;

for(i=1; i<=filecount; i=i+2) 

{

Y[i] = (data[i][Y1-width]-2*data[i][Y1]+data[i][Y1+width])/(width*width);

}

for(i=1; i<=filecount; i=i+2) 

{

if ( damage[i] == 1 ) g_sum_Y = g_sum_Y + Y[i];

if ( damage[i] == 5 ) cd_sum_Y = cd_sum_Y + Y[i];

}

g_mean_Y = g_sum_Y/g_count;

cd_mean_Y = cd_sum_Y/cd_count;

for(Z1=5; Z1<=53; Z1=Z1+2)

{

stop_Z = Z1+10;

if(stop_Z >= 54) stop_Z = 54;

for(Z2=Z1+1; Z2<=stop_Z; Z2=Z2+1)

{
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if(Z2==X2 && Z1 == X1) Z2=Z2+1;

if(Z2==Y2 && Z1 == Y1) Z2=Z2+1;

cd_sum_Z = 0.0;

g_sum_Z = 0.0;

width = Z2-Z1;

for(i=1; i<=filecount; i=i+2) 

{

Z[i] = (data[i][Z1-width]-2*data[i][Z1]+data[i][Z1+width])/(width*width);

}

for(i=1; i<=filecount; i=i+2) 

{

if ( damage[i] == 1) g_sum_Z = g_sum_Z + Z[i];

if ( damage[i] == 5 ) cd_sum_Z = cd_sum_Z + Z[i];

}

g_mean_Z = g_sum_Z/g_count;

cd_mean_Z = cd_sum_Z/cd_count;

/*************** compute covariance matricies for three variables from each group ***********/

g_cov_xx = 0.0;

g_cov_xy = 0.0;

g_cov_xz = 0.0;

g_cov_yy = 0.0;

g_cov_yz = 0.0;

g_cov_zz = 0.0;

cd_cov_xx = 0.0;

cd_cov_xy = 0.0;

cd_cov_xz = 0.0;

cd_cov_yy = 0.0;

cd_cov_yz = 0.0;

cd_cov_zz = 0.0;

for(i=1; i<=filecount; i=i+2) 

{
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if(damage[i] == 1) 

{

g_cov_xx = g_cov_xx + (X[i] - g_mean_X)*(X[i] - g_mean_X);

g_cov_xy = g_cov_xy + (X[i] - g_mean_X)*(Y[i] - g_mean_Y);

g_cov_xz = g_cov_xz + (X[i] - g_mean_X)*(Z[i] - g_mean_Z);

g_cov_yy = g_cov_yy + (Y[i] - g_mean_Y)*(Y[i] - g_mean_Y);

g_cov_yz = g_cov_yz + (Y[i] - g_mean_Y)*(Z[i] - g_mean_Z);

g_cov_zz = g_cov_zz + (Z[i] - g_mean_Z)*(Z[i] - g_mean_Z);

}

if(damage[i] == 5)

{

cd_cov_xx = cd_cov_xx + (X[i] - cd_mean_X)*(X[i] - cd_mean_X);

cd_cov_xy = cd_cov_xy + (X[i] - cd_mean_X)*(Y[i] - cd_mean_Y);

cd_cov_xz = cd_cov_xz + (X[i] - cd_mean_X)*(Z[i] - cd_mean_Z);

cd_cov_yy = cd_cov_yy + (Y[i] - cd_mean_Y)*(Y[i] - cd_mean_Y);

cd_cov_yz = cd_cov_yz + (Y[i] - cd_mean_Y)*(Z[i] - cd_mean_Z);

cd_cov_zz = cd_cov_zz + (Z[i] - cd_mean_Z)*(Z[i] - cd_mean_Z);

}

}

/******* pool covariance maticies ***********/

pcov_xx = (g_cov_xx + cd_cov_xx)/total_df;

pcov_xy = (g_cov_xy + cd_cov_xy)/total_df;

pcov_xz = (g_cov_xz + cd_cov_xz)/total_df;

pcov_yx = pcov_xy;

pcov_yy = (g_cov_yy + cd_cov_yy)/total_df;

pcov_yz = (g_cov_yz + cd_cov_yz)/total_df;
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pcov_zx = pcov_xz;

pcov_zy = pcov_yz;

pcov_zz = (g_cov_zz + cd_cov_zz)/total_df;

/*

printf("\n\npooled within-class covariance matrix\n");

printf("%f  %f  %f",pcov_xx, pcov_xy, pcov_xz);

printf("\n%f  %f  %f",pcov_yx, pcov_yy, pcov_yz);

printf("\n%f  %f  %f\n\n",pcov_zx, pcov_zy, pcov_zz);

*/

/*********** invert covariance matrix ***************/

mag = pcov_xx*pcov_yy*pcov_zz + pcov_xy*pcov_yz*pcov_zx;

mag = mag + pcov_yx*pcov_zy*pcov_xz - pcov_zx*pcov_yy*pcov_xz;

mag = mag - pcov_yx*pcov_xy*pcov_zz - pcov_zy*pcov_yz*pcov_xx;

inv_pcov_xx = (pcov_yy*pcov_zz - pcov_zy*pcov_yz)/mag;

inv_pcov_xy = (pcov_zy*pcov_xz - pcov_xy*pcov_zz)/mag;         

inv_pcov_xz = (pcov_xy*pcov_yz - pcov_yy*pcov_xz)/mag;

inv_pcov_yx = inv_pcov_xy;

inv_pcov_yy = (pcov_xx*pcov_zz - pcov_zx*pcov_xz)/mag;

inv_pcov_yz = (pcov_yx*pcov_xz - pcov_xx*pcov_yz)/mag;

inv_pcov_zx = inv_pcov_xz;

inv_pcov_zy = inv_pcov_yz;

inv_pcov_zz = (pcov_xx*pcov_yy - pcov_yx*pcov_xy)/mag;

/*

printf("\n\ninverted pooled within-class covariance matrix\n");

printf("%f  %f  %f",inv_pcov_xx, inv_pcov_xy, inv_pcov_xz);

printf("\n%f  %f  %f",inv_pcov_yx, inv_pcov_yy, inv_pcov_yz);

printf("\n%f  %f  %f\n\n",inv_pcov_zx, inv_pcov_zy, inv_pcov_zz);

*/

/*************** compute linear discriminant coeficients: Cf = invS*X *********/

/******** and compute linear discriminant function consant C = -0.5*X'*invS*X  **********/
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Cgx = g_mean_X*inv_pcov_xx +  g_mean_Y*inv_pcov_xy +  g_mean_Z*inv_pcov_xz;

Cgy = g_mean_X*inv_pcov_yx +  g_mean_Y*inv_pcov_yy +  g_mean_Z*inv_pcov_yz;

Cgz = g_mean_X*inv_pcov_zx +  g_mean_Y*inv_pcov_zy +  g_mean_Z*inv_pcov_zz;

Cg = -0.5*(Cgx*g_mean_X + Cgy*g_mean_Y + Cgz*g_mean_Z);

Ccdx = cd_mean_X*inv_pcov_xx +  cd_mean_Y*inv_pcov_xy +  cd_mean_Z*inv_pcov_xz;

Ccdy = cd_mean_X*inv_pcov_yx +  cd_mean_Y*inv_pcov_yy +  cd_mean_Z*inv_pcov_yz;

Ccdz = cd_mean_X*inv_pcov_zx +  cd_mean_Y*inv_pcov_zy +  cd_mean_Z*inv_pcov_zz;

Ccd = -0.5*(Ccdx*cd_mean_X + Ccdy*cd_mean_Y + Ccdz*cd_mean_Z);

/*************** classify each nut, count errors, keep track of two best models ******************/

error = 0;

for(i=2; i<=filecount; i=i+2) 

{

Dg = Cg + Cgx*X[i] + Cgy*Y[i] + Cgz*Z[i];

Dcd = Ccd + Ccdx*X[i] + Ccdy*Y[i] + Ccdz*Z[i];

class_score = 1;

if(Dcd > Dg) class_score = 2;

error = error + abs(damage[i] - class_score);

}

if(error < minerr)

{

min2err = minerr;

min2_X1 = min_X1;

min2_X2 = min_X2;

min2_Y1 = min_Y1;

min2_Y2 = min_Y2;

min2_Z1 = min_Z1;

min2_Z2 = min_Z2;
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minerr = error;

min_X1 = X1;

min_X2 = X2;

min_Y1 = Y1;

min_Y2 = Y2;

min_Z1 = Z1;

min_Z2 = Z2;

fprintf(fout,"minerr = %d  %d:%d  %d:%d 

%d:%d\n",minerr,min_X1,min_X2,min_Y1,min_Y2,min_Z1, min_Z2);

fprintf(fout,"min2err = %d  %d:%d  %d:%d

%d:%d\n",min2err,min2_X1,min2_X2,min2_Y1,min2_Y2,min2_Z1, min2_Z2);

}

} /***end of Z2 variable loop *******/

} /***end of Z1 variable loop *******/

/** printf("Y1 = %d  Y2 = %d\n",Y1, Y2);  */

} /***end of Y2 variable loop *******/

} /***end of Y1 variable loop *******/

printf("minerr = %d  %d:%d  %d:%d  %d:%d\n",minerr,min_X1,min_X2,min_Y1,min_Y2,min_Z1,

min_Z2);

printf("min2err = %d  %d:%d  %d:%d 

%d:%d\n",min2err,min2_X1,min2_X2,min2_Y1,min2_Y2,min2_Z1, min2_Z2);

} /***end of X2 variable loop *******/

} /***end of X1 variable loop *******/

 

fclose(fin); 

fclose(fout); 

} /** end of main **/
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APPENDIX G

/********** Program for Micro Linear ML2035 sine wave gernators *********/

/*  SINEPRG.C  Tom Pearson   July 1, 1997    */

/* programs Micro Linear ML2035 with 16 bit number in

serial fashion.  Controls pins SCK SID and LATI  

with Kiethly Metrobyte PIO-24 digital output card*/

#include <stdio.h>

#include <dos.h>    /* for outportb()  */

void

main(void)

{

int quit,i,j;

unsigned int pause;

outportb(0x303, 0);   /* sets ports to output only mode */

/**

program the ML2035: three bits are required.  In the following lines

the MSB is used to clock the serial port data (SCK).  Data is latched on

falling  edges of SCK.  The second MSB is used for data (SID).  It stays

at a low (0) or high (1) value for two SCK cycles in order to to be at the

proper state during a falling edge of SCK.  16 bit ata is fed serially to

the ML2035, data LSB first to data MSB last.  After sixteen bits of data

are fed, the LSB (of the three) is changed from low to high then to low

to latch the 16 bits of data fed to the ML2035.  This corresponds to LATI

on the Ml2035.  SCK is kept low during this cycle.  After data is transfered,

the ML2035 latches onto it and no further data transmissions are needed.

**/

/*********** program 9 kHz through ports PA 0-2 ***/
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outport(0x300, 0);

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0); /** start data input first bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0);  /** second bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0);  /** third bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0);  /** fourth bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0);  /** fith bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0);  /** sixth bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0);   /** seventh bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0);   /** eigth bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0);   /** nineth bit **/
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j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0);   /** tenth bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0);   /** eleventh bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 0);   /** twelveth bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 2);   /** thirteenthth bit **/

j = i * 3;

outport(0x300, 6);

j = i * 3;

outport(0x300, 0);   /** fourteenth bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 2);   /** fifteenth bit **/

j = i * 3;

outport(0x300, 6);

j = i * 3;

outport(0x300, 0);   /** sixteenth bit **/

j = i * 3;

outport(0x300, 4);

j = i * 3;

outport(0x300, 1);  /** latch data **/

j = i * 3;

outport(0x300, 1);

j = i * 3;

outport(0x300, 0);

j = i * 3;
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/*********** program 21 kHz through ports PC 0-2 ***/

outport(0x302, 0);

j = i * 3;

outport(0x302, 4);

j = i * 3;

outport(0x302, 2); /** start data input first bit **/

j = i * 3;

outport(0x302, 6);

j = i * 3;

outport(0x302, 2);  /** second bit **/

j = i * 3;

outport(0x302, 6);

j = i * 3;

outport(0x302, 0);  /** third bit **/

j = i * 3;

outport(0x302, 4);

j = i * 3;

outport(0x302, 2);  /** fourth bit **/

j = i * 3;

outport(0x302, 6);

j = i * 3;

outport(0x302, 0);  /** fith bit **/

j = i * 3;

outport(0x302, 4);

j = i * 3;

outport(0x302, 2);  /** sixth bit **/

j = i * 3;

outport(0x302, 6);

j = i * 3;

outport(0x302, 0);   /** seventh bit **/

j = i * 3;

outport(0x302, 4);

j = i * 3;

outport(0x302, 2);   /** eigth bit **/

j = i * 3;
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outport(0x302, 6);

j = i * 3;

outport(0x302, 0);   /** nineth bit **/

j = i * 3;

outport(0x302, 4);

j = i * 3;

outport(0x302, 2);   /** tenth bit **/

j = i * 3;

outport(0x302, 6);

j = i * 3;

outport(0x302, 0);   /** eleventh bit **/

j = i * 3;

outport(0x302, 4);

j = i * 3;

outport(0x302, 2);   /** twelveth bit **/

j = i * 3;

outport(0x302, 6);

j = i * 3;

outport(0x302, 2);   /** thirteenthth bit **/

j = i * 3;

outport(0x302, 6);

j = i * 3;

outport(0x302, 2);   /** fourteenth bit **/

j = i * 3;

outport(0x302, 6);

j = i * 3;

outport(0x302, 0);   /** fifteenth bit **/

j = i * 3;

outport(0x302, 4);

j = i * 3;

outport(0x302, 2);   /** sixteenth bit **/

j = i * 3;

outport(0x302, 6);

j = i * 3;

outport(0x302, 1);  /** latch data **/

j = i * 3;

outport(0x302, 1);
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j = i * 3;

outport(0x302, 0);

j = i * 3;

/*********** program 15 kHz through ports PB 0-2 ***/

outport(0x301, 0);

j = i * 3;

outport(0x301, 4);

j = i * 3;

outport(0x301, 2); /** start data input first bit **/

j = i * 3;

outport(0x301, 6);

j = i * 3;

outport(0x301, 0);  /** second bit **/

j = i * 3;

outport(0x301, 4);

j = i * 3;

outport(0x301, 2);  /** third bit **/

j = i * 3;

outport(0x301, 6);

j = i * 3;

outport(0x301, 0);  /** fourth bit **/

j = i * 3;

outport(0x301, 4);

j = i * 3;

outport(0x301, 2);  /** fith bit **/

j = i * 3;

outport(0x301, 6);

j = i * 3;

outport(0x301, 0);  /** sixth bit **/

j = i * 3;

outport(0x301, 4);

j = i * 3;

outport(0x301, 2);   /** seventh bit **/

j = i * 3;
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outport(0x301, 6);

j = i * 3;

outport(0x301, 0);   /** eigth bit **/

j = i * 3;

outport(0x301, 4);

j = i * 3;

outport(0x301, 2);   /** nineth bit **/

j = i * 3;

outport(0x301, 6);

j = i * 3;

outport(0x301, 0);   /** tenth bit **/

j = i * 3;

outport(0x301, 4);

j = i * 3;

outport(0x301, 2);   /** eleventh bit **/

j = i * 3;

outport(0x301, 6);

j = i * 3;

outport(0x301, 0);   /** twelveth bit **/

j = i * 3;

outport(0x301, 4);

j = i * 3;

outport(0x301, 0);   /** thirteenthth bit **/

j = i * 3;

outport(0x301, 4);

j = i * 3;

outport(0x301, 0);   /** fourteenth bit **/

j = i * 3;

outport(0x301, 4);

j = i * 3;

outport(0x301, 0);   /** fifteenth bit **/

j = i * 3;

outport(0x301, 4);

j = i * 3;

outport(0x301, 2);   /** sixteenth bit **/

j = i * 3;

outport(0x301, 6);
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j = i * 3;

outport(0x301, 1);  /** latch data **/

j = i * 3;

outport(0x301, 1);

j = i * 3;

outport(0x301, 0);

j = i * 3;

/*********** program 12 kHz through ports PA 3-5 ***/

outport(0x300, 0);

j = i * 3;

outport(0x300, 32);

j = i * 3;

outport(0x300, 16); /** start data input first bit **/

j = i * 3;

outport(0x300, 48);

j = i * 3;

outport(0x300, 16);  /** second bit **/

j = i * 3;

outport(0x300, 48);

j = i * 3;

outport(0x300, 0);  /** third bit **/

j = i * 3;

outport(0x300, 32);

j = i * 3;

outport(0x300, 16);  /** fourth bit **/

j = i * 3;

outport(0x300, 48);

j = i * 3;

outport(0x300, 0);  /** fith bit **/

j = i * 3;

outport(0x300, 32);

j = i * 3;

outport(0x300, 16);  /** sixth bit **/

j = i * 3;



187

outport(0x300, 48);

j = i * 3;

outport(0x300, 0);   /** seventh bit **/

j = i * 3;

outport(0x300, 32);

j = i * 3;

outport(0x300, 16);   /** eigth bit **/

j = i * 3;

outport(0x300, 48);

j = i * 3;

outport(0x300, 0);   /** nineth bit **/

j = i * 3;

outport(0x300, 32);

j = i * 3;

outport(0x300, 16);   /** tenth bit **/

j = i * 3;

outport(0x300, 48);

j = i * 3;

outport(0x300, 0);   /** eleventh bit **/

j = i * 3;

outport(0x300, 32);

j = i * 3;

outport(0x300, 16);   /** twelveth bit **/

j = i * 3;

outport(0x300, 48);

j = i * 3;

outport(0x300, 0);   /** thirteenthth bit **/

j = i * 3;

outport(0x300, 32);

j = i * 3;

outport(0x300, 16);   /** fourteenth bit **/

j = i * 3;

outport(0x300, 48);

j = i * 3;

outport(0x300, 16);   /** fifteenth bit **/

j = i * 3;

outport(0x300, 48);
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j = i * 3;

outport(0x300, 0);   /** sixteenth bit **/

j = i * 3;

outport(0x300, 32);

j = i * 3;

outport(0x300, 8);  /** latch data **/

j = i * 3;

outport(0x300, 8);

j = i * 3;

outport(0x300, 0);

j = i * 3;

/*********** program 18 kHz through ports PB 3-5 ***/

outport(0x301, 0);

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0); /** start data input first bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);  /** second bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);  /** third bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);  /** fourth bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);  /** fith bit **/
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j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);  /** sixth bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);   /** seventh bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);   /** eigth bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);   /** nineth bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);   /** tenth bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);   /** eleventh bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);   /** twelveth bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 0);   /** thirteenthth bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 16);   /** fourteenth bit **/

j = i * 3;
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outport(0x301, 48);

j = i * 3;

outport(0x301, 0);   /** fifteenth bit **/

j = i * 3;

outport(0x301, 32);

j = i * 3;

outport(0x301, 16);   /** sixteenth bit **/

j = i * 3;

outport(0x301, 48);

j = i * 3;

outport(0x301, 8);  /** latch data **/

j = i * 3;

outport(0x301, 8);

j = i * 3;

outport(0x301, 0);

j = i * 3;

/*********** program 24 kHz through ports PC 3-5 ***/

outport(0x302, 0);

j = i * 3;

outport(0x302, 32);

j = i * 3;

outport(0x302, 16); /** start data input first bit **/

j = i * 3;

outport(0x302, 48);

j = i * 3;

outport(0x302, 0);  /** second bit **/

j = i * 3;

outport(0x302, 32);

j = i * 3;

outport(0x302, 16);  /** third bit **/

j = i * 3;

outport(0x302, 48);

j = i * 3;

outport(0x302, 0);  /** fourth bit **/
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j = i * 3;

outport(0x302, 32);

j = i * 3;

outport(0x302, 16);  /** fith bit **/

j = i * 3;

outport(0x302, 48);

j = i * 3;

outport(0x302, 0);  /** sixth bit **/

j = i * 3;

outport(0x302, 32);

j = i * 3;

outport(0x302, 16);   /** seventh bit **/

j = i * 3;

outport(0x302, 48);

j = i * 3;

outport(0x302, 0);   /** eigth bit **/

j = i * 3;

outport(0x302, 32);

j = i * 3;

outport(0x302, 16);   /** nineth bit **/

j = i * 3;

outport(0x302, 48);

j = i * 3;

outport(0x302, 0);   /** tenth bit **/

j = i * 3;

outport(0x302, 32);

j = i * 3;

outport(0x302, 16);   /** eleventh bit **/

j = i * 3;

outport(0x302, 48);

j = i * 3;

outport(0x302, 0);   /** twelveth bit **/

j = i * 3;

outport(0x302, 32);

j = i * 3;

outport(0x302, 16);   /** thirteenthth bit **/

j = i * 3;
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outport(0x302, 48);

j = i * 3;

outport(0x302, 0);   /** fourteenth bit **/

j = i * 3;

outport(0x302, 32);

j = i * 3;

outport(0x302, 16);   /** fifteenth bit **/

j = i * 3;

outport(0x302, 48);

j = i * 3;

outport(0x302, 16);   /** sixteenth bit **/

j = i * 3;

outport(0x302, 48);

j = i * 3;

outport(0x302, 8);  /** latch data **/

j = i * 3;

outport(0x302, 8);

j = i * 3;

outport(0x302, 0);

j = i * 3;

} /** end of main **/
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APPENDIX H

/*********** PC program to interface with DSP in real time ******************/

/* FTPC.CPP   Tom Pearson  8-18-97

   this program sends hanning window and discrete Fourier transorm

   parameters to DSP to perform a 300 point DFT at 9, 12, 15, 18, 21,

   and 24 KHz.  The DSP performs the computations between sampling

   points. This program sends a flag to DSP to start sampling, data is

   stored once 300 points are sampled and transformed, DSP sends

   another flag to notify PC that 12 DFT have been obtained and stored.  

   PC collects data and flags DSP to start sampling again once another

   nut is in hte field of view.  Use with DSP program FTDSP.ASM

*/

#include <stdio.h>

#include <conio.h>   /* for outpw and inpw */

#include <dos.h>     /* for outportb and inportb  and outport and inport*/

#include <math.h>

void main(){

unsigned int low16, high16, lowbyte, dummy, quit;

long int real, imag;

long int data, Idata;

int i, count, saturate;

double mag[7], data, pi, i_data[7], r_data[7];

double sum[7], data1[400];

FILE *dataf;

char datafile[12];

 

printf("\n  filename to write data to: ");

scanf("%s",datafile);

dataf = fopen(datafile, "w");
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outportb(0x316,0x0);   /* sets 64k pg address to location 0 hex on 310 board */

/* send Hanning window & FT multipliers to DSP memory address 400H*/

pi = 3.14159265;

outport(0x312,0x400);  /* set address location on DSP */

for(i=0;i<=299;i++)

{

/* 9 K Hz multipliers */

real = 65535*(cos(pi/2.0 - i*pi/299.0))*cos(0.31415927*i)*1;

imag = 65535*(cos(pi/2.0 - i*pi/299.0))*sin(0.31415927*i)*1;

outpw(0x310, real);    /* write 16 LSB to DSP */

real = real >> 16;

outpw(0x310, real);    /* write 16 MSB  (sign) to DSP */

outpw(0x310, imag);    /* write 16 LSB to DSP */

imag = imag >> 16;

outpw(0x310, imag);    /* write 16 MSB  (sign) to DSP */

/* 12 K Hz multipliers */

real = 65535*(cos(pi/2.0 - i*pi/299.0))*cos(0.41887902*i)*1;

imag = 65535*(cos(pi/2.0 - i*pi/299.0))*sin(0.41887902*i)*1;

outpw(0x310, real);    /* write 16 LSB to DSP */

real = real >> 16;

outpw(0x310, real);    /* write 16 MSB  (sign) to DSP */

outpw(0x310, imag);    /* write 16 LSB to DSP */

imag = imag >> 16;

outpw(0x310, imag);    /* write 16 MSB  (sign) to DSP */

/* 15 K Hz multipliers */

real = 65535*(cos(pi/2.0 - i*pi/299.0))*cos(0.52359878*i)*1;

imag = 65535*(cos(pi/2.0 - i*pi/299.0))*sin(0.52359878*i)*1;

outpw(0x310, real);    /* write 16 LSB to DSP */

real = real >> 16;

outpw(0x310, real);    /* write 16 MSB  (sign) to DSP */

outpw(0x310, imag);    /* write 16 LSB to DSP */
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imag = imag >> 16;

outpw(0x310, imag);    /* write 16 MSB  (sign) to DSP */

/* 18 K Hz multipliers */

real = 65535*(cos(pi/2.0 - i*pi/299.0))*cos(0.62831853*i)*1;

imag = 65535*(cos(pi/2.0 - i*pi/299.0))*sin(0.62831853*i)*1;

outpw(0x310, real);    /* write 16 LSB to DSP */

real = real >> 16;

outpw(0x310, real);    /* write 16 MSB  (sign) to DSP */

outpw(0x310, imag);    /* write 16 LSB to DSP */

imag = imag >> 16;

outpw(0x310, imag);    /* write 16 MSB  (sign) to DSP */

/* 21 K Hz multipliers */

real = 65535*(cos(pi/2.0 - i*pi/299.0))*cos(0.73303829*i)*1;

imag = 65535*(cos(pi/2.0 - i*pi/299.0))*sin(0.73303829*i)*1;

outpw(0x310, real);    /* write 16 LSB to DSP */

real = real >> 16;

outpw(0x310, real);    /* write 16 MSB  (sign) to DSP */

outpw(0x310, imag);    /* write 16 LSB to DSP */

imag = imag >> 16;

outpw(0x310, imag);    /* write 16 MSB  (sign) to DSP */

/* 24 K Hz multipliers */

real = 65535*(cos(pi/2.0 - i*pi/299.0))*cos(0.83775804*i)*1;

imag = 65535*(cos(pi/2.0 - i*pi/299.0))*sin(0.83775804*i)*1;

outpw(0x310, real);    /* write 16 LSB to DSP */

real = real >> 16;

outpw(0x310, real);    /* write 16 MSB  (sign) to DSP */

outpw(0x310, imag);    /* write 16 LSB to DSP */

imag = imag >> 16;

outpw(0x310, imag);    /* write 16 MSB  (sign) to DSP */

}

/****************  base adress 310 DATA ACQUISITION *******************/
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/* set up infinite loop that only is broken with keyboard entry */

printf("\n type q to quit\n ");

printf("\n9 KHz\t12 KHz\t15 KHz\t18 KHz\t21 KHz\t24 KHz\n");

quit = 0;

count = 0;

while(quit == 0)

{

saturate = 0;

count++;

/** send value 1 to DSP to tell it to start collecting data **/

outport(0x312,0x809800);  /* set address location on DSP */

outpw(0x310, 0x1);   /* write number 1 to DSP to start sampling */

outpw(0x310, 0x0);

/** wait for DSP to get 300 samples, a value of zero will

appear at DSP memory location 0x809800 after

300 samples are aquired **/

outport(0x312,0x809800);  /* set address location on DSP */

lowbyte = inpw(0x310); /* read 2 bytes from 310 memory */

dummy = inpw(0x310);  /*DSP increments one address space */

while ( lowbyte == 1)

{

outport(0x312,0x809800);  /* set address location on DSP */

lowbyte = inpw(0x310); /* read 2 bytes from 310 memory */

dummy = inpw(0x310);  /*DSP increments one address space */

/** allow escape from program here **/

if(kbhit())

{

if(getch() == 'q')

{

quit = 1;
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printf("\n\n****** program terminated ******");

}

}

}

/* read 12 DFT's from DSP memory */

outport(0x312,0x110);  /* set address location on DSP */

for(j=1;j<=12;j++)

{

for(i=1;i<=6;i++)

{

low16 = inpw(0x310); /* read 16 LSB from DSP memory */

high16 = inpw(0x310);  /*read 16 MSB from DSP memory  */

Rdata = high16;

Rdata = Rdata << 16;    /* shift 16 MSB to proper place */

r_data[j][i] = (Rdata + low16)/100000.0;  /* add in 16 LSB */

low16 = inpw(0x310); /* read 16 LSB from DSP memory */

high16 = inpw(0x310);  /*read 16 MSB from DSP memory  */

Idata = high16;

Idata = Idata << 16;    /* shift 16 MSB to proper place */

i_data[j][i] = (Idata + low16)/100000.0;  /* add in 16 LSB */

}

}

for(i=1;i<=6;i++)

{

sum[i] = 0.0;

}

for(j=1;j<=12;j++)

{

for(i=1;i<=6;i++)

{

mag[j][i] = sqrt(r_data[j][i]*r_data[j][i] + i_data[j][i]*i_data[j][i]);

sum[i] = sum[i] + mag[j][i];

If (mag[j][i] < 500) then 

{
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printf( “\nphotodiode saturated before 12 DFT’s aquired\n”);

saturate = 1;

}

/***** write data to hard drive and monitor ****/

if(saturate == 0)

{

printf("%d\t %4.0f\t%4.0f\t%4.0f\t%4.0f\t%4.0f\t%4.0f\n",count,

sum[1],sum[2],sum[3],sum[4],sum[5],sum[6]);

fprintf(dataf"%d\t%4.0f\t%4.0f\t%4.0f\t%4.0f\t%4.0f\t%4.0f\n",count,sum[1],sum[2]

,sum[3],sum[4],sum[5],sum[6]);

}

}  /** end of keyboard interupt while loop **/

fclose(dataf);

} /** end of main **/
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APPENDIX I

************************** TMS320 ASSEMBLY PROGRAM FOR REAL TIME DFT **************

; FTDSP.ASM            Tom Pearson             8-8-97

; Uses 180KHz external clock (connected to lower pin of J40, J42 in the B 

; position) as the the ConvertStart signal.

; Uses the onboard 5 mhz oscillator as the serial port clock signal

; Uses xf1 to turn oscillator ON/OFF. The oscillator can be turned off

; to reduce noise when the serial port is not used.

;

; samples 300 data points and performs hanning window and discrete

; Fourier Transform at 9, 12, 15, 18, 21, 24 KHz.  Outputs magnetude

; of the transform at these frequencies.  Detects precence of nut by

; decline in average of 50 samples.  Computes 12 DFT's for every nut.

; Flags PC when 12 DFT's are obtained and stored.

; Use this program in conjunction with the C program FTPC.CPP

.text

RESET   .word   StartPt

;

IOF_SET_XF1     .word   62H

IOF_RESET_XF1   .word   22H

CTRL            .word   808000H ; Base addr. of onchip peripherals

TIMGB0CONHI     .word   6H      ; Word to make tclk0 HI

TIMGB0CONLO     .word   2H      ; Word to make tclk0 LO

SERGLOBA        .word   150144H ; Ser. Pt. Global Control Reg.

SERGLOB0        .word   0C150144H ; Ser. Pt. Global Control Reg.

SERPRTX0        .word   111H    ; Ser. Pt. transmit pin particulars

SERPRTR0        .word   111H    ; Ser. Pt. receive pin particulars

SERTIM0         .word   03CFh   ; Ser. Pt. timer control        

SERTIM0VAL      .word   01h     ; Ser. Pt. timer period

DATA_TO_HOST    .word   0110H    ; Memory loc. 
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MAX_MEM         .word   1A0H    ; maximum memory location  for 12 DFT's

LATCH_VAL       .word   0H     ; Value to write to Model 310 Latch

; sets gain and A/D mux channel

LATCH_AREA      .word   0FFFFFFH ; Address of Latch in TMS320 memory

HANNING         .word   400H ; memory address of Hanning window

FT_PARAMS       .word   400H   ; memory location of first FT parameters

FT_STORE        .word   809C00H ; location of 24 KHZ complex FT data

COMP            .word   0FFF00000H      ; used to get 12 MSB 

NUT             .word   0400H       ; used to determine presence of nut

.text

StartPt:

;

;

LDP     0h                      ; Set Data Page

LDI     1800H,ST                ; Initialize status reg.        

LDI     0985H,SP                ; Initialize stack ptr

LDI     @IOF_SET_XF1,R1         ; Turn oscillator on

LDI     R1,IOF                  ; to enable serial port

; transmissions

LDI     @CTRL,AR0               

LDI     @LATCH_AREA,AR3         ; Set the A/D Channel 

LDI     @LATCH_VAL,R0           ; and Gain=8 channel = 0

STI     R0,*+AR3(0)

LDI     @SERGLOBA,R0    ; Program the Serial

STI     R0,*+AR0(64)    ; Port and its 

LDI     @SERTIM0VAL,R0  ; Timer

STI     R0,*+AR0(70)

LDI     @SERTIM0 ,R0

STI     R0,*+AR0(68)

LDI     @SERPRTX0,R0

STI     R0,*+AR0(66)
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LDI     @SERPRTR0,R0

STI     R0,*+AR0(67)

LDI     @SERGLOB0,R0

STI     R0,*+AR0(64)

LDI     @TIMGB0CONHI,R0 ; ConvertStart HI

STI     R0,*+AR0(20H)

LDI     18H,R0          ; Set Wait States in TMS320 to ZERO

STI     R0,*+AR0(64H)   ; (See Chap. 7 in TMS320C3x Guide)

LDI     11H, R3         ; store a non-zero at address 809800

STI     R3, @809800H    ; to prevent DSP from sampling

; until PC tells it to

LDI     @COMP,AR7      ; used to get 12 MSB

initial:

LDI     0,R4             ; load 0 into maximum sample register

 ; for checking presence of nut

LDI     @809800H, R1       ; read poll value from 809800h

CMPI    0,R1             ; compares 0 to value at 809800h

BNE     wait_for_nut     ; get sample in not equal to zero

BR      initial          ; keep waiting if equal to zero

   

   ; sample 50 points to and check for presence of nut

wait_for_nut:                     ; Has data been received ?

LDI     *+AR0(64),R2    ; Check status

AND     01H,R2

BZ      wait_for_nut      ; Branch if not received

LDI     *+AR0(76),R3    ; Read value from serial port

AND     AR7,R3   ; get 12 MSB and shift into lower two bytes

LSH     -20,R3          ; of the 32 bit memory word

ADDI    01H,R1          ; add to sample index 

CMPI    R4,R3           ; compare new sample with maximum

BGT     new_maximum

CMPI    32H,R1          ; see if 50 samples has been taken



202

BGT     check           ; if 50 sample received, check for nut

BR      wait_for_nut    ; otherwise go get another sample

new_maximum:

LDI     R3,R4           ; store new maximum value

BR      wait_for_nut

check:

   ; check if nut is present

STI     R4,@109H      ;TEST  TEST

LDI     R4,R3          ; reset maximum register

LDI     0,R4

CMPI    @NUT,R3        ; check if nut was present

BGT     wait_for_nut   ; go back if no nut present

   ; reset data to host memory adress if no nut present

LDI     0110H,R3

STI     R3, @DATA_TO_HOST    ;reset location of memory storage

mem_reset:      

LDI @HANNING,AR2        ; set location of Hanning window 

LDI 0H,R0       ; 9 KHz real data

LDI 0H,R1       ; 9 KHz imaginary data

LDI 0H,R4       ; 12 KHz real data

LDI 0H,R5       ; 12 KHz imaginary data

LDI 0H,R6       ; 15 KHz real data

LDI 0H,R7       ; 15 KHz imaginary data

LDI 0H,AR1      ; 18 KHz real data

LDI 0H,AR3       ; 18 KHz imaginary data 

LDI 0H,AR4       ; 21 KHz real data

LDI 0H,AR5       ; 21 KHz imaginary data

LDI 0H,AR6       ; 24 KHz real data

LDI 0H,R3        ; 24 KHz imaginary data

STI R3,@FT_STORE    ; 24 KHz imaginary data  (on chip memory)  

get_sample:                     ; Has data been received ?

LDI     *+AR0(64),R2    ; Check status

AND     01H,R2
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BZ      get_sample      ; Branch if not received

LDI     *+AR0(76),R3    ; Read value from serial port

AND     AR7,R3   ; get 12 MSB and shift into lower two bytes

LSH     -20,R3          ; of the 32 bit memory word

   ; hanning window and Fourier Transform

   ; 9 KHz

   

MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  REAL

ADDI    R2,R0          ; add to Fourier transform total

ADDI    01H,AR2         ; increment hanning window address

MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  IMAGINARY

ADDI    R2,R1          ; add to Fourier transform total

ADDI    01H,AR2         ; increment hanning window address

   ; 12 KHz

   

MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  REAL

ADDI    R2,R4          ; add to Fourier transform total

ADDI    01H,AR2         ; increment hanning window address

MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  IMAGINARY

ADDI    R2,R5          ; add to Fourier transform total

ADDI    01H,AR2         ; increment hanning window address

   ; 15 KHz

   

MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  REAL

ADDI    R2,R6          ; add to Fourier transform total

ADDI    01H,AR2         ; increment hanning window address

MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  IMAGINARY

ADDI    R2,R7          ; add to Fourier transform total

ADDI    01H,AR2         ; increment hanning window address

   ; 18 KHz
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MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  REAL

ADDI    R2,AR1          ; add to Fourier transform total

ADDI    01H,AR2         ; increment hanning window address

MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  IMAGINARY

ADDI    R2,AR3          ; add to Fourier transform total

ADDI    01H,AR2         ; increment hanning window address

   ; 21 KHz

   

MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  REAL

ADDI    R2,AR4          ; add to Fourier transform total

ADDI    01H,AR2         ; increment hanning window address

MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  IMAGINARY

ADDI    R2,AR5          ; add to Fourier transform total

ADDI    01H,AR2         ; increment hanning window address

   ; 24 KHz

   

MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  REAL

ADDI    R2,AR6          ; add to Fourier transform total

ADDI    01H,AR2         ; increment hanning window address

MPYI     *+AR2(0),R3,R2    ; multiply hanning FT window  IMAGINARY

LDI     @FT_STORE,R3    ; get data from on chip memory

ADDI    R2,R3          ; add to Fourier transform total

STI     R3,@FT_STORE  ; send this to on chip memory

ADDI    01H,AR2         ; increment hanning window address

  ; check if 300 data points have been sampled

LDI     AR2, R3         ; allow 300 sample to be taken

SUBI    1210H,R3         ; 1210h - 400h = 3600dec

BNZ     get_sample      ; go get next sample

    ; send data to DSP memory so PC can access

LDI @DATA_TO_HOST,AR2   ; DSP memory location for PC to read data

; 9 KHz

STI     R0,*+AR2(0)     ; Send to memory for viewing 
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ADDI    01H,AR2         ; increment memory address 

STI     R1,*+AR2(0)     ; Send to memory for viewing 

; 12 KHz

ADDI    01H,AR2         ; increment memory address        

STI     R4,*+AR2(0)     ; Send to memory for viewing 

ADDI    01H,AR2         ; increment memory address 

STI     R5,*+AR2(0)     ; Send to memory for viewing 

; 15 Khz

ADDI    01H,AR2         ; increment memory address        

STI     R6,*+AR2(0)     ; Send to memory for viewing 

ADDI    01H,AR2         ; increment memory address 

STI     R7,*+AR2(0)     ; Send to memory for viewing 

; 18 KHz

ADDI    01H,AR2         ; increment memory address

STI     AR1,*+AR2(0)     ; Send to memory for viewing 

ADDI    01H,AR2         ; increment memory address 

STI     AR3,*+AR2(0)     ; Send to memory for viewing 

; 21 KHz

ADDI    01H,AR2         ; increment memory address        

STI     AR4,*+AR2(0)     ; Send to memory for viewing 

ADDI    01H,AR2         ; increment memory address 

STI     AR5,*+AR2(0)     ; Send to memory for viewing 

; 24 KHz

ADDI    01H,AR2         ; increment memory address        

STI     AR6,*+AR2(0)     ; Send to memory for viewing 

ADDI    01H,AR2         ; increment memory address 

LDI     @FT_STORE,R3    ; get data from on chip memory

STI     R3,*+AR2(0)     ; Send to memory for viewing 

    

ADDI    01H,AR2         ; increment memory address 

STI     AR2, @DATA_TO_HOST  ; store memory location

CMPI    @MAX_MEM,AR2    ; see if 12 DFT's have been acquired 

BGT     send_data

BR      mem_reset       ; sample another set if nut was present

send_data:
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LDI     0H,R3           ; send 0h to memory address 809800h

STI     R3, @809800H    ; to tell PC that data has been collected

BR      initial         ; Go wait for PC command to sample again

.end


